Posts

Setting Limits on Fluid Properties


Earlier this month, I talked about how we set limits for wear metals and contaminants. There is one final group of results Data Analysts examine to determine the health of oil, fuels, and coolants: fluid properties.

Fluid properties are the physical and chemical features that allow the fluid to perform as it was designed. Viscosity, Acid Number, Base Number, Oxidation, Nitration and Additives are the main fluid properties examined by fluid analysis.

These properties don’t have much in common. Different tests are used to determine if the fluid still has the ability to protect equipment. Viscosity needs to be run at different temperatures to match the operating conditions of the equipment, ICP is used to quantify the metals found in common additives, oxidation and nitration are measured using FTIR, and acid number and base number need to be run using different titration methods to get the measurement we desire.

Just like wear metals and contaminants, the actual flagging limits depend on what the fluid is, the equipment the fluid is being used in, and what application the equipment is doing. These factors all can change the maintenance recommendations from the Data Analysts, which is why it is important to provide as much information about the sample as possible.

To learn more about the challenges facing each fluid property and how we set our flagging limits, please download this technical bulletin.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Oil, Coolant and Fuel Contamination


It doesn’t matter if it came from outside the equipment, was generated inside the equipment or if it worked its way into the oil from another system in the machine, contamination is any substance that isn’t supposed to be in the fluid being tested.

Most people think of contamination as something working its way into the equipment from the outside. Water and many types of particles, like dirt, sneak in through cracks, broken seals or unprotected ports, but in equipment with physical and chemical reaction occurring inside of it, foreign substances are only part of what we consider “contamination”.

Some contaminates are created during equipment operations. Soot is a natural byproduct of diesel combustion and commonly works its way into the engine oil, which is why the oil is formulated with additives to deal with soot. Lubricant additives are designed to protect components and prolong oil life; however they can become contaminants when heat, pressure or a chemical reaction causes them to fall out of suspension.

Fluids from other systems can be contaminants, such as coolant and fuel mixing with engine oil. All three systems need to operate in conjunction with the others, and leaks happen. Small holes and cracks between the oil and cooling systems could leak fluid one-way, so testing both fluids is recommended to catch leaks early. Over-fueling or worn cylinder rings can lead to fuel entering crankcase oil. Either way, cross-contamination from other systems is a sign of a mechanical problem that needs to be fixed before it escalates into a breakdown.

The type of equipment and application will determine what contamination could affect it and what tests to perform. The Contamination Flagging Limits technical bulletin has more information on how POLARIS Laboratories® determines the severity of contamination.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Setting Wear Metal Flagging Limits


Our customers have a wide range of knowledge about fluid analysis. Many are new to the process and others have decades of experience. Some have even earned tribology certifications or degrees. Our Data Analysts end up talking to all of them, so we receive a wide variety of questions every day.

Occasionally, our experienced customers compare our test results to the wear metals flagging limits set by the original equipment manufacturers (OEMs) and we often get calls asking why we don’t follow the OEM’s recommended levels. Fortunately, this is an opportunity for us to explain the value of analysis from POLARIS Laboratories®.

We have analyzed millions of oil samples on most types of equipment, meaning we have a huge pool of data and customer feedback. We use that information to make sure our flagging limits won’t have customers perform maintenance too early or too late. Giving precise recommendations saves customers time, money, and effort, but we want to make sure that equipment is protected, too.

In addition to evaluating individual wear metals, the combinations of wear metals are also significant. Combinations of wear metals are significant because they may indicate a particular alloy, which is vital to understanding if a specific part is wearing – for example, elevated copper and tin would indicate a bronze part is wearing.

Many OEMs publish wear metal guidelines. These general guidelines may be a place to start to understanding fluid analysis reports, however they are not designed to be used as absolute values. To maximize the value of fluid analysis, a customer should expect a credible laboratory to have a comprehensive database, utilize statistical analysis to refine flagging limits, and have qualified Data Analysts to make appropriate maintenance and reliability recommendations.

For more information about how and why POLARIS Laboratories® adjusts flagging limits, download our new technical bulletin.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published September 11, 2014

Getting What You Need from Diesel Fuel Analysis


Just like oil and coolant analysis, diesel fuel analysis makes sure the fluid has properties that allow the equipment to operate when needed and isn’t contaminated with a substance that will reduce the operational efficiency.

Unlike oil or coolant, diesel fuel analysis is unique because testing happens most often while the fluid is in bulk storage or upon delivery. Coolant and oil properties degrade due to continued operation of their systems, whereas diesel fuel picks up contaminants during shipping, degrades over time or grows biological organisms as it sits in storage.

Many of our customers will send in a diesel fuel sample because they’ve noticed performance or a maintenance event – smoking, power loss and clogged fuel filters are all commonly associated with fuel problems. The symptoms will determine what tests to run on the fuel sample, and the results will prescribe the corrective action needed to make the fuel usable again.

However, reactive testing isn’t the most efficient use of diesel fuel analysis because the company will still experience equipment downtime and repair costs. Proactive testing, such as pulling fuel samples from incoming shipments, day tanks or long-term storage tanks, will identify fuel problems before they can affect equipment availability.

To find the diesel fuel test package that’s right for you, please review our diesel fuel quality and diesel fuel cleanliness solution sheets or contact us with your reason for testing diesel fuel.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published April 16, 2014