3 Simple Steps to Avoid Holiday Shipping Delays

Sample. Ship. Results. Action!

The holidays are approaching faster than ever and we’ve recently heard from shipping carriers that it’s going to be a very busy holiday shipping season. Carriers all over the globe are seeing a surge in the number packages shipped daily.

We know how vital your sample results are when faced with making tough maintenance decisions and we want to help you prepare to navigate this busy time to eliminate your equipment’s downtime.

The good news is, we’re providing a few steps you can take now to help beat the holiday shipping rush!

1. Pre-order Kits and Supplies

Place orders for sample kits now. Having a back stock of sample jars on hand for when equipment is scheduled for its upcoming preventive maintenance makes it simple and convenient to pull your samples. Don’t forget to add tubing, vacuum pumps, prepaid postage and valves to your cart!

 

2. Implement a Shipping Strategy

Get those important samples taken and send them on their way to the closest laboratory as soon as you can (click here to see all of our locations). Timing is everything these days and, if you plan accordingly, you can avoid your package being delayed by this season’s holiday shipping surge. Also, be sure to utilize carriers who offer a trackable shipping service to our laboratory doors. This way you know when your package arrives for processing.

 

3. Communication

Team communication is very important as well this holiday season. Make sure your team is prepared to ship samples out to a laboratory location closest to them as soon as they can (click here for a guide on How to Ship Samples). In addition, make sure they know that they can purchase prepaid UPS labels on the online store when ordering kits. These pre-paid labels are perfect for a 10-pack of samples and are designed to reduce packaging preparation time so you can get your samples on their way to the laboratory.

While these are unprecedented times, POLARIS Laboratories® is continually looking for ways to save you time and money this holiday season.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published November 24, 2020

New Year: New Goals | 5 Tips to Regain Your Program

The new decade started with 2020 being a year we will not soon or easily forget. Many things were thrown out of sequence and activities were either cancelled or deferred.

If maintenance was one of those activities affected, the following may help in regaining control.

  • Take an inventory of your equipment and condition
  • Identify or reassess the importance (criticality) of each equipment in your processes
  • Dust off and review maintenance records of each individual piece of equipment
  • Identify specific needs for each piece of equipment

If fluid analysis is one tool you use to assess equipment conditions, then consider these:

  1. Collaborate with your Technical Business Consultant | Identify specific actions/activities that will enhance the impact of a well-managed fluid analysis program
  2. Audit your Equipment List | Complete any missing information and move inactive equipment to a mothball account
  3. Review your Users | Assess your list of active users and add new or remove those that are no longer needed
  4. Determine Training Needs | Identify gaps and schedule appropriate sessions and topics
  5. Develop and Participate in a Program Review | Program reviews highlight areas where the program is being successful, as well as those needing improvement. Specific equipment in need of attention can be identified as well.

If you are ready to refocus your maintenance and fluid analysis, contact your POLARIS Laboratories® Technical Business Consultant for assistance in reviewing your maintenance practices so you can take your fluid analysis program to the next level.

POLARIS Laboratories® Technical Business Consultants:

Henry Neicamp

hneicamp@polarislabs.com

Connect with Henry on LinkedIn

Julio Acosta

jacosta@polarislabs.com

Connect with me on LinkedIn

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published October 13, 2020

Program Enrichment Review: It’s Not Just Data, It’s What You Do With It

Today’s fluid analysis capabilities offer a great deal more than just monitoring component health. With today’s technology, along with performing the proper tests, we can:

  • Monitor the condition of the oil
  • See if it is suitable for continued use
  • Reduce the amount of used oil disposal
  • Adjust maintenance intervals and strategies
  • Adjust component replacement schedules
  • Improve forecasting and budgeting
  • Increase component life hours

With all of this in mind, it begs the question, how can we be sure to maximize the return on investment from fluid analysis?  I believe the answer to this question is a Program Enrichment Review. Let’s take a look at some of the features/benefits of a Program Enrichment Review and what it can do with your data:

Pareto Principle

A “Pareto Principle” approach identifies the components that are contributing to the majority of high severity reports and helps identify corrective actions for your maintenance team. Let me share with you how POLARIS Laboratories® was able to use this principle to help a coal mining customer (see figure 1 below).  Using Pareto Charts, POLARIS Laboratories® was able to determine that out of the 87 component types on file, only 11 component types were accounting for 80% of the high severity (3’s & 4’s) reports. By using additional Pareto Charts (not shown), POLARIS Laboratories® was able to identify the coal mine’s biggest problem was abrasive contaminants (ie. coal dust, dirt, etc.). By focusing the maintenance team’s efforts on these 11 component types, and using filter carts, kidney loop filtering, seal replacement, etc., the coal mine was able to address the abrasive contaminants issue and thereby realize a 6% reduction high severity reports over a 6 month period.  The head of the maintenance team made the following statement about their fluid analysis program: “Guys, where can we spend a dollar today and get this kind of return on investment when it comes to protecting our equipment and extending its life cycle?”

Figure 1

Typical Data Shared in a Program Enrichment Review

  • Sample volume (i.e. total number of samples submitted per quarter)
  • High severity reports (severity 3’s & 4’s / scale of 0-4) by region, location, asset, etc.
  • Identify issues via Pareto charts (i.e. 80% of the effects come from 20% of the causes)
  • Scatter plots – help determine optimum drain intervals via key performance indicators (e.g. viscosity, acid number, base number, oxidation, fuel dilution, soot loading, etc.)
  • HORIZON® web-based management reports (e.g. Problem Summary Report, Severity Summary Report, Data Analysis Report, Action Taken Summary Report – ROI, etc.)
  • Scorecards (i.e. Component Compliance, Sampling Frequency Compliance, High Severity %, Shipping Time, etc.)
  • Technical Business Consultant’s subject matter expertise (i.e. observations & recommendations)

Quarterly Program Enrichment Reviews

Delivering the Program Enrichment Review via a quarterly virtual meeting with the customer’s “Program Champion” and maintenance team will serve as a venue to share both challenges and best practices associated with their fluid analysis program and maintenance “best practices”.

It’s Not Just Data, It’s What You Do With It!

Maximize asset reliability and regain control of your production schedules with an effective fluid analysis program by POLARIS Laboratories® . . . it costs so little to protect so much.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published September 22, 2020

How to Stay Afloat: Tips to Increase the Value of Your Fluid Analysis Program

A properly executed oil analysis program delivers operational cost savings while increasing component life and reducing time between scheduled and unscheduled equipment overhauls. An oil analysis program can also address safety concerns and minimize risk to personnel and assets.

The goal of an oil analysis program is to become more proactive, less reactionary and to conduct maintenance and repairs at a lower level of intervention. Such practices can reduce labor costs, spare parts and oil consumption. In turn, this decreases urgent demands on the supply chain to replenish lubricating oil or spare parts.

Oil Analysis + Planned Maintenance

Linking the right oil analysis program with the right planned maintenance program will allow you to generate better work orders based on precise oil analysis conditions and laboratory recommendations. This will lead to improved maintenance actions and more accuracy in spare parts purchase orders and lubrication inventory.

Moving to a steady state where planned maintenance is associated with an oil analysis program across multiple ships reduces the pressure and stress on engineering staff. Data collection across multiple vessels and across like-for-like equipment creates a view of what’s happening now and what happened in the past. This insight especially the past conditions, is useful in forming a plan to reduce or even eliminate certain recurring oil conditions.

It Starts with Ownership

A successful oil analysis program begins with everyone involved in the program taking ownership. From the engineer taking samples, to other engineering team members carrying out appropriate, timely maintenance actions. Knowing where in the system to sample, and sampling consistently each time from the designated sample point under the same operating conditions, is crucial to program success.

Create a Feedback Loop

Maintaining a constant, positive approach to your oil analysis program will reward you with a measurable return on your oil analysis program investment. In time, this will serve as a feedback loop for program self-improvement and increased equipment reliability.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published September 10, 2020

The Secret to Making Sampling Easy

That sounds like an infomercial title, right? But it’s not often that you’ll find a product that will:
  • Make your daily life easier
  • Quickly pay for itself
  • Lower chances of contaminating your sample bottle
If this is what you’re looking to achieve, sample valves are what you want!

You won’t even need to shut off equipment to collect a sample. Valves reduce the equipment you need to use and speed up sampling by 3-7 minutes on average. All of that saved labor adds up quickly to pay for the cost of the sample valve and lower your bottom line for years to come.

But wait, there’s more…

Sample valves are installed directly into your equipment, typically in a port made by the manufacturer for this purpose. This makes it easy to access the fluid in the system while ensuring no environmental dirt or moisture contaminate the remaining fluid. The ports also allow you to extend lines to a common rail so remote reservoirs can be accessed quickly, easily, and safely.

Push-button valves use the system’s pressure so all you need is the bottle to collect a sample – ditch that pump and tubing! To ensure dirt doesn’t get in your sample bottle, order a probe-style valve and use a needle-and-cap kit to collect the cleanest sample possible.

Unpressurized systems need a little motivation to pull quality samples quickly. Probe-and-needle valves can be used with vacuum pumps for the cleanest samples possible. But what do you do when you have a large reservoir and the fluid doesn’t mix at the sides? Just install a sample valve with a pilot tube to extend into where the fluid flows.

If you have equipment, there’s a valve for you. Download this guide to learn more about sample valves.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 29, 2020

Get the Most Value from Your Program: Advanced Testing

Oil Analysis: The First Question

The first question of any new, or redefined oil analysis program should be, what do I want to achieve from the program? The answer to this question will determine how the program is managed, and more importantly, what testing will be performed on the samples. All samples will receive an element of three groups of testing:

  1. Wear metal assessment
  2. Contamination
  3. Fluid properties

But the depth of testing in these three groups can change, depending on what you want to achieve.

1. Wear Metals

Every oil sample tested will receive an evaluation of wear metals and elements, this is taken as standard in the industry. But the number and type of tests performed in addition to this determine what level of testing is performed, and therefore what level of information you will receive on a sample report. Many companies will go with testing the minimum, so the price per sample is lower.

Does basic testing add significant value to a program or improve reliability?

An example of this could be testing a diesel engine oil without including a base number. This means a true evaluation of the optimum oil drain interval is not possible. Another example would be testing a hydraulic oil with performing an ISO code & particle count so that the laboratory cannot assess the true cleanliness of the fluid. Both of these examples could be considered vital tests in terms of improving reliability and reducing maintenance costs, but are not always included in some basic testing programs.

2. Contamination

More importantly, monitoring and reporting actual accurate levels of contaminants present within oil samples is critical because the amount and type of contaminant present will pose a different set of problems at different levels as shown in Tables 1 and 2  below (related to acceptable levels of water contamination in oils). The majority of OEMs provide guidelines for various contaminants and acceptable levels for contamination for their specific systems. Below are a few examples of results of water contamination results and findings from standard testing compared to advanced testing methods.

  • Diesel Fuel Dilution
    • Stating that diesel fuel dilution is present in engine oil by a simple Flash Point or FTIR evaluation is not an effective method for determining contamination. Diesel dilution condemning limits stated by OEMs can range from 3% to over 5% and therefore an accurate amount of the contaminants present via Gas Chromatography in the oil (diesel in this case) is also now a pre-requisite when looking to monitor contamination levels in samples.
  • Water Contamination
    • Performing a test on an oil sample using the hot plate test method may not always able to detect the exact amount of water within the sample. An advanced test, such as Karl Fischer, would give you more accurate results, especially the lower levels of water.

Table 1

Water Content Result Reported Maintenance Action & Decision
Lab 1 result Water present Check unit for source of contamination, but as quantity of contaminant is not known, do I change oil?
Lab 2 result Water > 0.2% Check unit for source of contamination, but as definitive level of contaminant is not known do I change oil?
Lab 3 result Water = 0.35% Check unit for source of contamination, but as level is below OEM recommendation of 0.45% no oil change required.

 

 

 

 

 

 

Table 2

Water Content Result Reported Maintenance Action & Decision
Lab 1 result Water present No problem reported, continue to monitor as normal
Lab 2 result Water <0.1% No problem reported, continue to monitor as normal
Lab 3 result Water = 432ppm Check unit for source of contamination and change oil as level is above acceptable level of 350ppm for this application.

Is it best practice to simply state that ‘water is present’, or would an accurate result in either percentage of parts per million (ppm) add significant value to maintenance decisions?

In addition, when looking at reporting the samples’ cleanliness levels via ISO code & particle count, what aids the customer more, the simple ISO code, or the code complimented with a full breakdown of the number of particles at each micron size?

ISO CODE
22/19/13
ISO CODE >4 μm >6 μm >10 μm >14 μm >21 μm >38 μm >70 μm >100 μm
22/19/13 20959 3656 340 73 22 2 0 0

3. Fluid Properties

The analysis of a lubricants’ overall condition helps determine the future health of equipment and subsequent oil changes or top-ups that may be required. Every laboratory should offer a wide range of fluid condition analysis services based on the machinery that the oil has been sampled from. These tests are a great barometer for the overall condition of the component and the actual lubricant itself. Performing testing on condition is not only an economically viable option, but it should be considered standard for any oil sample. In today’s cost-conscious climate and increased environmentally concerned conditions, extending lubricant life will help decrease costs and protect the environment from early lubricant disposal.

Including Base Number and Acid Number on an engine oil sample and Acid Number alone on industrial oils paired with the utilization of advanced data analysis and interpretation systems makes it possible to make a judgement on how much further an organization can safely extend an oil drain – if the correct parameters are being monitored and the associated recommendations are being followed. These services are not always included in some basic testing programs – this means you could be missing out on significant savings if these are ignored – both financial and environmental.

Any testing is better than none, but upgrading your samples to a more advanced testing will add significant value, proactively improve reliability and save more equipment.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 9, 2020

Dangers of ASTM D2896 Base Number Testing

 

ASTM D2896 Base Number

The first concern I have with ASTM D 2896 is a concern of laboratory safety, which I am quite concerned with and most customers are unaware of. Simply put, the safety concerns of ASTM D2896 are considerable. The reagents used for this test are basically some of the most hazardous I have ever encountered in my professional career.

Hazardous Chemicals

The titrant used in ASTM D2896 is Perchloric Acid. This is a very strong acid that is corrosive, an oxidizer and may cause organ damage over prolonged periods of exposure. As an oxidizer, it has been known to cause explosions. One of the solvents used in this test is Chlorobenzene, a chlorinated solvent that is extremely harmful to the environment. In fact, it is so harmful that it is banned in many countries around the world. Suffice it to say, the chemicals used in this test are dangerous to those who perform the test.

Perchloric Acid

On February 20, 1947, a violent explosion rocked the city of Los Angeles, California resulting in the deaths of 17 people and the wrecking of 116 buildings including the complete demolition of the O’Connor Electro-Plating Works, source of the blast. From the mass of information and misinformation, which varied from the early rumors of a powerful new army explosive, prematurely set off, to the decision, almost three weeks later, of the coroner’s jury that the explosion may have resulted from the contamination of a solution of perchloric acid and acetic anhydride with “easily oxidizable materials,” perchloric acid emerged as the nation-wide object of underwriters’ investigations.

 

Right Tests, Right Fluids, Right Equipment, Right Environment

My other concerns are with providing fluid analysis results that use the right tests on the right fluids for the right equipment in the right environment. Tests and test methods could change based on all of those factors, and too many customers request ASTM D2896 to measure an oil’s base number for good, yet misguided, reasons.

Background on Base Number Testing

First, a little bit about base number and how it is measured. The results from a base number test is vitally important to you from a maintenance and reliability aspect. Alkaline elements are added to base oils to react with the weak acids formed during diesel fuel combustion. The alkaline reserve neutralizes the acids and form slightly basic degradation products that are no longer capable of reacting to the weak acids. Eventually the alkaline reserve in the lubricant is depleted to the point where the oil can no longer protect equipment from acid corrosion.

Brief History of ASTM D2896

ASTM D2896 was designed purely to determine alkalinity reserve in new lubricants. I’ll repeat that last bit, as it is the crux of the issue; new lubricants. The test uses Perchloric Acid as a titrant because it reacts quickly and reliably with the large alkalinity reserve in new lubricants. ASTM D2896 then measures the titration product to determine the strength of the alkaline reserve. This method is reliable, which is why it is still used by oil manufacturers and listed on oil spec sheet.

However, perchloric acid is too strong to use when weakly-basic degradation products are present, especially oils used in internal combustion engines. When ASTM D2896 is applied to in-service fluids, the perchloric acid reacts to every basic element available. Instead of measuring the alkaline reserve like we want, it also titrates with the degradation products. This can result in what ASTM refers to as a “falsely exaggerated” or sometimes even “falsely understated”. For these reasons, ASTM says:

“When the base number of the new oil is required as an expression of its manufactured quality, Test Method D2896 is preferred, since it is known to titrate weak bases that this test method (ASTM D4739) may or may not titrate reliably.”

 

ASTM D4739 – A New Method?

The solution required a new method for base number testing in in-service fluids. ASTM D4739 substitutes Hydrochloric Acid as the titrant rather than perchloric acid. Because hydrochloric acid is weaker than perchloric acid, it only reacts to the alkaline reserves and not the slightly-basic degradation products.

 

 

Further, ASTM D2896 can give very poor inflection points or even multiple poor inflection points on in-service lubricants, especially if they are seriously degraded. This makes giving accurate and reliable results challenging at best, and flat out wrong, at worst. To make this scenario even worse, perchloric acid will react with wear metals in the in-service fluids. This will result in more titrant being consumed, giving a higher base number results. This can result in hiding a problem that could be resolved if you knew the real value.

The ASTM methods are pretty clear on this. ASTM D2896 should be used for new lubricants and ASTM D4739 should be used for in-service applications. However, many customers request ASTM D2896 on in-service lubricants. Why is that? I believe the main driver of this is the fresh lubricant specification or certificate of analysis lists ASTM D2896 as the method for base number testing.

ASTM D4739 / ASTM D2896 Scenario

An important part of the discussion is this essential fact- not all the tests performed on a lubricants certificate of analysis are pertinent for condition monitoring of in-service lubricants. Many tests performed on fresh lubricants are designed to prove that all additives have been added to the blend as a quality control test. As a result, if you only request testing based on your certificate of analysis from the manufacturer, you are not getting the right data to make an accurate and reliable maintenance recommendation. Best case scenario, you are paying for testing that gives you no or limited information on the maintenance and reliability of your equipment. Worst case scenario, you could be getting misleading results. This is particularly the case in the ASTM D4739 / ASTM D2896 scenario.

Change to ASTM D4739

As a result, ASTM D4739 is definitely the method of choice for in-service fluids. Do yourself a favor, make the change today and improve the quality of the information you can use to improve your reliability.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 7, 2020

The Importance of Submitting a Baseline Reference Sample

What is a Baseline Reference Sample?

A baseline reference sample is a sample of new or unused product submitted to the fluid analysis laboratory. Submitting a baseline sample allows you to gain an understanding of the starting values of the product in use. It is important that the baseline sample being submitted has not been introduced into a system as this can introduce variables such as commingling, contamination or degradation. Ideally the sample should be pulled from a verifiable source such as a bulk tank, tote, pail or bottle.

What are the benefits of submitting a Baseline Reference Sample? 

It is important to have an understanding of what the starting values are for your lubricant. Knowing where the base number (BN) and/or acid number (AN), oxidation and nitration values start will provide a more precise prediction of how the used oil sample should be flagged as the lubricant degrades. Likewise, if the additive levels are known then it is easier for the Data Analyst to determine if the lubricant was actually installed in the machine.

What does the laboratory do with my Baseline Reference Sample?

Baseline samples are account specific, meaning they will be used on the account for which they were submitted and appear on used oil sample reports using the same product. When submitting a baseline sample, it is important to correctly fill out the sample paperwork to indicate it is a baseline sample by checking the box labeled “baseline reference”.  Selecting this box will automatically enter baseline sample as the component type.

Being careful to provide the complete product information (manufacturer, product name and viscosity grade) and using a specimen from a known, verified source will ensure the information generated by the laboratory will be useful and reliable for comparison against future used or suspect samples. Once an account has an established baseline reference sample, it is important that used samples with the same product have the product information listed exactly the same as the baseline sample. This will ensure the baseline and the used samples are linked for comparison on your reports.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published June 9, 2020

Optimizing Intervals in Energy-Producing Turbines

Wind turbines are playing an increasingly important role in greener energy production. This means it is vital that these units operate at optimum capacity for longer periods. This requires a high level of equipment reliability and, due to the remote locations or access difficulties, all types of maintenance need to be planned at optimum intervals to ensure maximum uptime and reductions in total cost of ownership (TCO).

The operating fluids inside a turbine (lubricating oil in gearboxes and hydraulic systems, fluids used in the cooling systems and the greases used) all play a significant part in optimizing operation of the wind turbine. All of these operating fluids should be monitored closely to determine fluid condition, levels of contamination and measure levels of wear metals generated within each system.

What is also becoming more important is the connectivity and integration of all of these fluid sample results with other measurements and operational readings taken from the turbines. With the importance of planning maintenance at optimum operational intervals and reducing unscheduled downtime, monitoring these sample results within OEM asset management or ERP systems, ensures the whole O&M process is made far more efficient.

Using POLARIS Laboratories® unique DataConnect service, companies can benefit from work orders being automatically generated from critical samples within your own operating system, as well as assessing the sample reports alongside other readings to ensure maximum uptime of the turbines.

Using a global fluid analysis laboratory will also ensure operators benefit from having all of their data in a single silo, again making the process of monitoring and mining sample data more consistent and efficient.

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published May 27, 2020

Sink or Swim: Fluid Analysis + Marine

In today’s shipping environment, uptime, safety, equipment life extension and increasing oil drain intervals are, and should be, the focus of any fluids analysis program.

Realizing the most value from your programs, whether lubricants, coolants, fuels, grease or filter debris analysis can help avoid:

  • Unscheduled down time and unplanned maintenance and associated costs for repair
  • Urgent requirements for lubricant replenishment inventory on short notice or in remote areas
  • Extra lubricants expense incurred by changing the oil unnecessarily without the benefit of a historical analysis report
  • Undetected problems manifesting into eventual catastrophic equipment failure

Oil analysis has been around since the 1940’s but, has matured significantly since then. Equipment has also evolved as design or environmental pressures have placed requirements for some equipment to be lighter in weight, be more fuel efficient and be manufactured to higher tolerances with more exotic materials. The result often places more stress to the lubricant, often with a lower volumes of lubricant in circulation to save weight.

Standard Practices

Take for example, marine or power plant engines with anti-polishing rings in the cylinder liners. The use of anti-polishing rings result is lower oil consumption which is an advantage for the equipment owner, but already places higher duty on the lubricant due smaller oil sump volumes and less need for frequent oil top ups. Monitoring critical parameters such as base number with laboratory and onboard testing has worked well and is already proven to be an industry standard practice.

Seeing An ROI

The benefits of your fluids analysis program can very easily pay for itself by being able to more closely monitor equipment and fluid condition, help manage implementation of oil drain interval programs, and in all cases provides information on oil and machinery condition necessary to make informed decisions about operational reliability and future maintenance.

With management reporting tools, a fluids analysis program can bring all of this information onto one platform, making interrogation of key performance indicators across assets much easier to visualize. Used properly, outliers can be detected more quickly. Of course, oil analysis is only one part of a complete maintenance program and should be used in conjunction with vibration, acoustics and thermography where applicable.

Free webinar on Fluid Analysis in the Marine Industry

If you’re interested in learning about fluid analysis as it relates to the maritime industry, I encourage you to attend our upcoming webinar on June 16. There is no cost to join and open to everyone!

Sink or Swim: How Fluid Analysis Saves Marine Engines

June 16 at 11 a.m. ET

See what will be covered and register here.

To learn more about POLARIS Laboratories® please contact us. We will show you the POLARIS Laboratories® way of helping you build a custom fluids analysis program with all the benefits of linking to your CMMS program, providing you with actionable fluids analysis commentary, and an online reporting portal, all with the benefits of being an independent laboratory and helping you save money.

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published March 25, 2020