Elemental Analysis Testing: Add it to Your Engine Coolant Report

Is Elemental Analysis Testing Included in Your Engine Coolant Report?

Do you get a physical every year? How about a routine blood test? Elemental Analysis is similar to having your blood drawn for a yearly physical. Just as the bloodwork will provide more details to your physician on how your body is functioning, the elemental analysis testing will provide more details on the equipment’s overall system health. If elemental analysis testing isn’t included in your routine fluid analysis, information regarding corrosion/wear, contamination and certain fluid properties will not be able to be monitored. Cooling system concerns are a leading factor to how well the equipment effectively can perform. Adding elemental analysis testing will identify corrosion, mechanical issues, contamination and other possible fluid properties in the sample.

With majority of engine failures traced back to cooling system, predominantly due to overheating events, proper coolant analysis testing should be performed on all samples. When proper testing is not included, the missing information will hinder the laboratory’s maintenance recommendations as the possible root cause for concerns may not be identified. Ultimately, not identifying the root cause will lead to higher downtimes and engine failures.

How to Add Elemental Analysis

Reach out today to review if your fluid analysis program includes the proper testing that will best benefit your program. Including elemental analysis testing within your program will help identify if concerns are present in the cooling system. When specific issues are identified correction can be performed to reduce further potential damage to the equipment. Elemental analysis testing should be included on all samples submitted to the laboratory as this testing will provide critical information regarding the equipment’s overall system health. Catching early system concerns and performing proper corrections will assist with maintaining proper cooling system function reducing unexpected downtimes and engine failures.

Check out our Technical Bulletin to find out more information on the Benefits of Elemental Analysis Testing on Engine Coolants. 

Download the Technical Bulletin

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published October 8, 2020

Program Enrichment Review: It’s Not Just Data, It’s What You Do With It

Today’s fluid analysis capabilities offer a great deal more than just monitoring component health. With today’s technology, along with performing the proper tests, we can:

  • Monitor the condition of the oil
  • See if it is suitable for continued use
  • Reduce the amount of used oil disposal
  • Adjust maintenance intervals and strategies
  • Adjust component replacement schedules
  • Improve forecasting and budgeting
  • Increase component life hours

With all of this in mind, it begs the question, how can we be sure to maximize the return on investment from fluid analysis?  I believe the answer to this question is a Program Enrichment Review. Let’s take a look at some of the features/benefits of a Program Enrichment Review and what it can do with your data:

Pareto Principle

A “Pareto Principle” approach identifies the components that are contributing to the majority of high severity reports and helps identify corrective actions for your maintenance team. Let me share with you how POLARIS Laboratories® was able to use this principle to help a coal mining customer (see figure 1 below).  Using Pareto Charts, POLARIS Laboratories® was able to determine that out of the 87 component types on file, only 11 component types were accounting for 80% of the high severity (3’s & 4’s) reports. By using additional Pareto Charts (not shown), POLARIS Laboratories® was able to identify the coal mine’s biggest problem was abrasive contaminants (ie. coal dust, dirt, etc.). By focusing the maintenance team’s efforts on these 11 component types, and using filter carts, kidney loop filtering, seal replacement, etc., the coal mine was able to address the abrasive contaminants issue and thereby realize a 6% reduction high severity reports over a 6 month period.  The head of the maintenance team made the following statement about their fluid analysis program: “Guys, where can we spend a dollar today and get this kind of return on investment when it comes to protecting our equipment and extending its life cycle?”

Figure 1

Typical Data Shared in a Program Enrichment Review

  • Sample volume (i.e. total number of samples submitted per quarter)
  • High severity reports (severity 3’s & 4’s / scale of 0-4) by region, location, asset, etc.
  • Identify issues via Pareto charts (i.e. 80% of the effects come from 20% of the causes)
  • Scatter plots – help determine optimum drain intervals via key performance indicators (e.g. viscosity, acid number, base number, oxidation, fuel dilution, soot loading, etc.)
  • HORIZON® web-based management reports (e.g. Problem Summary Report, Severity Summary Report, Data Analysis Report, Action Taken Summary Report – ROI, etc.)
  • Scorecards (i.e. Component Compliance, Sampling Frequency Compliance, High Severity %, Shipping Time, etc.)
  • Technical Business Consultant’s subject matter expertise (i.e. observations & recommendations)

Quarterly Program Enrichment Reviews

Delivering the Program Enrichment Review via a quarterly virtual meeting with the customer’s “Program Champion” and maintenance team will serve as a venue to share both challenges and best practices associated with their fluid analysis program and maintenance “best practices”.

It’s Not Just Data, It’s What You Do With It!

Maximize asset reliability and regain control of your production schedules with an effective fluid analysis program by POLARIS Laboratories® . . . it costs so little to protect so much.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published September 22, 2020

How to Stay Afloat: Tips to Increase the Value of Your Fluid Analysis Program

A properly executed oil analysis program delivers operational cost savings while increasing component life and reducing time between scheduled and unscheduled equipment overhauls. An oil analysis program can also address safety concerns and minimize risk to personnel and assets.

The goal of an oil analysis program is to become more proactive, less reactionary and to conduct maintenance and repairs at a lower level of intervention. Such practices can reduce labor costs, spare parts and oil consumption. In turn, this decreases urgent demands on the supply chain to replenish lubricating oil or spare parts.

Oil Analysis + Planned Maintenance

Linking the right oil analysis program with the right planned maintenance program will allow you to generate better work orders based on precise oil analysis conditions and laboratory recommendations. This will lead to improved maintenance actions and more accuracy in spare parts purchase orders and lubrication inventory.

Moving to a steady state where planned maintenance is associated with an oil analysis program across multiple ships reduces the pressure and stress on engineering staff. Data collection across multiple vessels and across like-for-like equipment creates a view of what’s happening now and what happened in the past. This insight especially the past conditions, is useful in forming a plan to reduce or even eliminate certain recurring oil conditions.

It Starts with Ownership

A successful oil analysis program begins with everyone involved in the program taking ownership. From the engineer taking samples, to other engineering team members carrying out appropriate, timely maintenance actions. Knowing where in the system to sample, and sampling consistently each time from the designated sample point under the same operating conditions, is crucial to program success.

Create a Feedback Loop

Maintaining a constant, positive approach to your oil analysis program will reward you with a measurable return on your oil analysis program investment. In time, this will serve as a feedback loop for program self-improvement and increased equipment reliability.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published September 10, 2020

Do You Have the Right Coolant Testing?

Providing a Greater Understanding

Do you have an extended life coolant? Did you know that mechanical and/or contamination can occur causing the extended life coolant properties to decrease and reduce the life of the fluid? Have you ever had an unknown coolant formulation in the cooling system and a coolant top off was needed? Including High Pressure Liquid Chromatography (HPLC) testing to your program will provide the additional information to assist with providing a greater understanding of your fluid properties. When HPLC testing is included in your coolant test package, additional coolant inhibitors that may be in the coolant formulation will be monitored. Results for the inhibitors will be reported in parts per million.

What is High Pressure Liquid Chromatography (HPLC) Testing?

HPLC testing will report two different inhibitor types:

  1. Carboxylic organic acids
    • These acids will be utilized in extended life coolant formulations and hybrid formulations. The inhibitors will provide corrosion protection of the metals in the cooling system. The corrosion protection inhibitors needed for your application and formulation must be maintained and adequate to protect your cooling system.
    • There are a lot of different organic acids that may be used in the coolant formulation. Understanding the coolant formulation is a key factor in maintaining the coolant appropriately.
    • Carboxylic organic acids our method reports:
      • Benzoic Acid
      • Sebacic Acid
      • 2-Ethylhexanoic Acid
      • Octanoic Acid
      • P-Toluic Acid
      • Adipic Acid
      • 4-Tert-Butylbenzoic Acid
  2. Azoles
    • Azoles may be utilized in any coolant formulation on the market. Azole inhibitors are for copper and brass protection in the coolant formulation.
    • Azoles our method reports:
      • Benzotriazole (BZT)
      • Tolytriazole (TTZ)
      • Mercaptobenzothiazole (MBT)

HPLC Compared To Test Strip

HPLC testing will provide more insight of the type of inhibitors in the coolant formulation compared to a pass/fail carboxylic acid test strip. Test strips are subjective as a color determination is usually the indicator for the result. Test strips will only work for certain coolant formulations determined by what the test strip is looking for. Whereas HPLC testing can be performed on any coolant formulation and report each of the organic acids and azoles the method is able to report in ppm. The HPLC testing will indicate concerns of mixing coolant formulations when compared to a baseline. HPLC testing will also help determine if carboxylic organic acids and azoles are utilized in the coolant formulation or not. A test strip will not be able to provide this information and may or may not be applicable for the coolant formulation providing an inaccurate result making more difficult to maintain your fluid appropriately.

Reach out today! Add High Pressure Liquid Chromatography testing to your program.

Including HPLC testing to your program will provide testing to determine if organic acids and azole inhibitors, utilized in some coolant formulations, are being maintained for proper protection.
HPLC testing will provide more insight on how to maintain the coolant formulation and will determine if concerns are present impacting your corrosion protection inhibitors. Catching concerns early and making corrections will lower corrosion concerns and even possible cooling system issues that could have led to engine problems.

Check out our Technical Bulletin to find out more information on how High Pressure Liquid Chromatography (HPLC) Testing works:

Download

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published September 8, 2020

Ion Chromatography Testing Can Catch Cooling System Concerns Early

Have you received a recurring action on your coolant analysis report? Are you noticing recurring concerns with your pH, corrosion metals, and/or inhibitor depleting rapidly? Have you ever topped off the system with water only?

With basic coolant testing a piece of the puzzle to help identify the root cause of the concern in the cooling system may be missing. Basic testing will identify concerns and provide recommendations however, there may still be more going on in the system that basic testing will not identify.

Why Should Advanced Ion Chromatography (IC) Coolant Testing Be Added?

The advanced Ion Chromatography (IC) testing will determine glycol degradation, contamination and coolant inhibitors of nitrate, nitrite and possibly phosphate. IC testing will provide additional valuable information regarding your cooling system health.

IC testing will help find concerns with:

  • Hot spots (plugging of the system)
  • Combustion gas leaks
  • Electrical ground issues
  • Contamination concerns

Each concern above will cause a chemical reaction within the cooling system, resulting in failure overtime. Approximately 40% of engine failures can be traced back to a concern in the cooling system. Including IC testing to your routine coolant analysis program will provide more information on what is going on in the cooling system. Concerns can be caught early allowing for scheduled down time and less engine failures due to the cooling system.

What are Glycol Degradation Acids?

Degradation acids will form when ethylene or propylene glycol chemically breakdown. When degradation acids are present further glycol breakdown will occur as the acids present will act similar to a catalyst causing further glycol degradation over time.

Causes for degradation acids:

  • Localized overheating
  • Restriction of coolant circulation
  • Low coolant pressure
  • Mechanical concerns
  • Age of fluid

Degradation acids will hinder the coolant properties over time and may result in a decrease of the coolants ability to protect the metals in the system. Identifying the root cause is key to maintain the fluid and equipment. 

What Contamination Concerns can be Found?

Ion Chromatography will indicate contamination of chloride and sulfate. Chloride and sulfate are a concern if present in the system. Chloride can form hydrochloric acid, decarbonizes iron and is extremely corrosive. Sulfate can form sulfuric acid and combined with calcium to form scale in the system.

Causes for contamination:

  • Water source not meeting specification
  • Combustion gases
  • Air leak
  • Flush water left in system

Sulfate, when trending with prior history, can find an early combustion gas leak concern in the cooling system before an action is indicated on your lubricant analysis report. The coolant analysis will actually catch the concern and action can be made before a significant amount of coolant can mix with the lubricant leading to further engine wear.

Chloride contamination could be due to a venting concern allowing outside air to enter the system. Both chloride and sulfate can be present in a water that does not meet specification. Just a quick top off with water can cause a failure over time.

Catching contamination early with Ion Chromatography testing will provide the proper actions needed to correct the source of contamination before corrosion and/or chemical reactions occur harming the metals in the engine.

Are there benefits of reporting Nitrite and Nitrate?

Nitrite and nitrate may or may not be part of the coolant formulation as a corrosion inhibitor. The Ion Chromatography method is a more accurate method to determine nitrite concentration. The inhibitor if present, should be maintained for proper corrosion protection. Results can find concerns of low inhibitor, or mixing if inhibitor levels are not consistent with a new fluid reference. Trending both inhibitor levels can detect early concerns of chemical reactions, such as an electrical ground issue where nitrite could convert to nitrate.

Reach out today! Add Ion Chromatography testing to your program.

Advanced coolant testing will provide more details of possible chemical reactions occurring in your equipment and/or finding the root concern of recurring high severities found during basic coolant testing. Trending results from IC will provide more information on the fluid and find possible mechanical concerns in the cooling system. Catching system concerns early will help keep the cooling system functioning correctly and reduce unscheduled down times increasing your return of investment.

Check out our Technical Bulletin to find out more information on how Ion Chromatography (IC) Testing works:

Click to Download

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published August 26, 2020

The Secret to Making Sampling Easy

That sounds like an infomercial title, right? But it’s not often that you’ll find a product that will:
  • Make your daily life easier
  • Quickly pay for itself
  • Lower chances of contaminating your sample bottle
If this is what you’re looking to achieve, sample valves are what you want!

You won’t even need to shut off equipment to collect a sample. Valves reduce the equipment you need to use and speed up sampling by 3-7 minutes on average. All of that saved labor adds up quickly to pay for the cost of the sample valve and lower your bottom line for years to come.

But wait, there’s more…

Sample valves are installed directly into your equipment, typically in a port made by the manufacturer for this purpose. This makes it easy to access the fluid in the system while ensuring no environmental dirt or moisture contaminate the remaining fluid. The ports also allow you to extend lines to a common rail so remote reservoirs can be accessed quickly, easily, and safely.

Push-button valves use the system’s pressure so all you need is the bottle to collect a sample – ditch that pump and tubing! To ensure dirt doesn’t get in your sample bottle, order a probe-style valve and use a needle-and-cap kit to collect the cleanest sample possible.

Unpressurized systems need a little motivation to pull quality samples quickly. Probe-and-needle valves can be used with vacuum pumps for the cleanest samples possible. But what do you do when you have a large reservoir and the fluid doesn’t mix at the sides? Just install a sample valve with a pilot tube to extend into where the fluid flows.

If you have equipment, there’s a valve for you. Download this guide to learn more about sample valves.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 29, 2020

What To Do if You Have a Coolant Leak

So, you’ve received your oil analysis report back recommending an inspection of the cooling system. (You may or may not also find an oily sheen in the cooling system.) When a lubricant report is received indicating coolant contamination, the root cause of the problem must be found and corrected.

Are you only looking at half of the data?

An internal leak will require further maintenance to be performed to correct the internal contamination, such as a possible new engine rebuild. Have you determined the root cause for the internal leak? Internal leaks are not just something that will be expected to occur at some point in your equipment life expectancy. The same could be said for concerns with your lubricant analysis report indicating higher oxidation values and not being able to optimize the lubricant drain interval. Identifying and reacting to the lubricant analysis recommendations may not always identify the root cause when only testing the oil.

Why would an internal leak or shorter drain intervals occur?

One possible reason is from overheating. Overheating will put more stress on both the lubricant and the coolant and increase acid build up to occur, causing corrosion to the metal surfaces of the engine eventually leading to soft spots. The overheating may not be found on your dashboard but the internal temperatures in the engine may still be elevated. The higher temperatures will cause stress to the lubricant resulting in oxidation and acid build up which ends up thickening the oil. At this point the oil cannot provide the adequate lubricant regime necessary to help protect the engine from wear. Having metal to metal contact will not only increase the engines internal operating temperature, it will also cause soft spots to occur causing cracks and coolant to leak into the engine. As a result this can lead to engine failures, unexpected downtime, maintenance and repair costs.

Are you regularly testing the cooling system within your equipment?

OEMs have indicated approximately 40%, if not higher, of preventable premature engine failures can be traced back to problems in the cooling system. Concerns in the cooling system may be present without a visible indicator and cooling system failures are less common. This is one reason some may not think to test their coolant. However, understanding how the cooling system functions and how the fluid properties can impact the cooling system is a critical component to the overall engine performance.

The purpose of your cooling system is to:

  1. Circulate the coolant throughout the system
  2. Remove heat from the engine
  3. Dissipate heat from the coolant

The cooling system concerns that are not corrected early will hinder the performance of the engine and eventually lead to a premature engine failure. Adding coolant testing to your fluid analysis program will help aid in catching coolant related issues and/or determine if concerns are present due to out of date maintenance procedures. Routine testing of the cooling system will provide recommendations and correction needed to maintain the cooling system and fluid properties. If concerns are not corrected or monitored then internal leaks and/or shorten lubricant drains may occur causing increased wear and damage to your equipment.

Test all fluids in your equipment

Testing all fluids within the equipment by utilizing an effective fluid analysis program will help reduce unexpected down times and/or equipment replacements – resulting in an increase return of investment (ROI). Reach out today to discuss how improve your overall fluid analysis program by testing all components in your equipment.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 21, 2020

Get the Most Value from Your Program: Advanced Testing

Oil Analysis: The First Question

The first question of any new, or redefined oil analysis program should be, what do I want to achieve from the program? The answer to this question will determine how the program is managed, and more importantly, what testing will be performed on the samples. All samples will receive an element of three groups of testing:

  1. Wear metal assessment
  2. Contamination
  3. Fluid properties

But the depth of testing in these three groups can change, depending on what you want to achieve.

1. Wear Metals

Every oil sample tested will receive an evaluation of wear metals and elements, this is taken as standard in the industry. But the number and type of tests performed in addition to this determine what level of testing is performed, and therefore what level of information you will receive on a sample report. Many companies will go with testing the minimum, so the price per sample is lower.

Does basic testing add significant value to a program or improve reliability?

An example of this could be testing a diesel engine oil without including a base number. This means a true evaluation of the optimum oil drain interval is not possible. Another example would be testing a hydraulic oil with performing an ISO code & particle count so that the laboratory cannot assess the true cleanliness of the fluid. Both of these examples could be considered vital tests in terms of improving reliability and reducing maintenance costs, but are not always included in some basic testing programs.

2. Contamination

More importantly, monitoring and reporting actual accurate levels of contaminants present within oil samples is critical because the amount and type of contaminant present will pose a different set of problems at different levels as shown in Tables 1 and 2  below (related to acceptable levels of water contamination in oils). The majority of OEMs provide guidelines for various contaminants and acceptable levels for contamination for their specific systems. Below are a few examples of results of water contamination results and findings from standard testing compared to advanced testing methods.

  • Diesel Fuel Dilution
    • Stating that diesel fuel dilution is present in engine oil by a simple Flash Point or FTIR evaluation is not an effective method for determining contamination. Diesel dilution condemning limits stated by OEMs can range from 3% to over 5% and therefore an accurate amount of the contaminants present via Gas Chromatography in the oil (diesel in this case) is also now a pre-requisite when looking to monitor contamination levels in samples.
  • Water Contamination
    • Performing a test on an oil sample using the hot plate test method may not always able to detect the exact amount of water within the sample. An advanced test, such as Karl Fischer, would give you more accurate results, especially the lower levels of water.

Table 1

Water Content Result Reported Maintenance Action & Decision
Lab 1 result Water present Check unit for source of contamination, but as quantity of contaminant is not known, do I change oil?
Lab 2 result Water > 0.2% Check unit for source of contamination, but as definitive level of contaminant is not known do I change oil?
Lab 3 result Water = 0.35% Check unit for source of contamination, but as level is below OEM recommendation of 0.45% no oil change required.

 

 

 

 

 

 

Table 2

Water Content Result Reported Maintenance Action & Decision
Lab 1 result Water present No problem reported, continue to monitor as normal
Lab 2 result Water <0.1% No problem reported, continue to monitor as normal
Lab 3 result Water = 432ppm Check unit for source of contamination and change oil as level is above acceptable level of 350ppm for this application.

Is it best practice to simply state that ‘water is present’, or would an accurate result in either percentage of parts per million (ppm) add significant value to maintenance decisions?

In addition, when looking at reporting the samples’ cleanliness levels via ISO code & particle count, what aids the customer more, the simple ISO code, or the code complimented with a full breakdown of the number of particles at each micron size?

ISO CODE
22/19/13
ISO CODE >4 μm >6 μm >10 μm >14 μm >21 μm >38 μm >70 μm >100 μm
22/19/13 20959 3656 340 73 22 2 0 0

3. Fluid Properties

The analysis of a lubricants’ overall condition helps determine the future health of equipment and subsequent oil changes or top-ups that may be required. Every laboratory should offer a wide range of fluid condition analysis services based on the machinery that the oil has been sampled from. These tests are a great barometer for the overall condition of the component and the actual lubricant itself. Performing testing on condition is not only an economically viable option, but it should be considered standard for any oil sample. In today’s cost-conscious climate and increased environmentally concerned conditions, extending lubricant life will help decrease costs and protect the environment from early lubricant disposal.

Including Base Number and Acid Number on an engine oil sample and Acid Number alone on industrial oils paired with the utilization of advanced data analysis and interpretation systems makes it possible to make a judgement on how much further an organization can safely extend an oil drain – if the correct parameters are being monitored and the associated recommendations are being followed. These services are not always included in some basic testing programs – this means you could be missing out on significant savings if these are ignored – both financial and environmental.

Any testing is better than none, but upgrading your samples to a more advanced testing will add significant value, proactively improve reliability and save more equipment.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 9, 2020

Is Your Grease Headed to Failure?

Many maintenance technicians can tell you the health of their equipment just by the way it sounds and their maintenances and lubrication schedules. However, if you ask about their greased components, most say we grease it either on schedule or when it sounds like it needs it. Unfortunately both of those answers cannot tell you the health of those grease components. Your grease could be headed to failure without giving you any external indication.

Problems with a Grease Schedule

If you grease on a schedule, you could be greasing that unit too much and as you add that grease, you have to ask how much is too much. If you happen to be greasing too much, then you could be over lubricating your bearings which can cause the balls or rollers to slide along the race rather than turning. Then, the grease could actually churn. This churning mechanism could ultimately bleed the base oil from the grease. What will remain to lubricate the bearing is a thickened grease with little or no lubricating elements. Since there is not enough lubricating oil, and there’s excess heat from the churning, the grease would start to harden. The final outcome is bearing failure and equipment downtime.

Waiting to Re-Grease

On the flip-side, if you wait until it sounds like it needs grease before re-greasing, then you have already starved the component and the damage is already done. Putting grease in will only quiet it down but the final outcome is bearing failure and equipment downtime.

Prevent Failure and Downtime

The proper way to prevent greased equipment failure is to monitor the component through regular grease analysis. By monitoring not only the wear but the grease properties, you can truly know how the grease is holding up. Under operation heat, load and external environmental influences can degrade the properties of the lubricant and its ability to provide lubrication of your greased equipment.

Learn more about our grease testing solution here.

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published June 23, 2020

Dangers of ASTM D2896 Base Number Testing

 

ASTM D2896 Base Number

The first concern I have with ASTM D 2896 is a concern of laboratory safety, which I am quite concerned with and most customers are unaware of. Simply put, the safety concerns of ASTM D2896 are considerable. The reagents used for this test are basically some of the most hazardous I have ever encountered in my professional career.

Hazardous Chemicals

The titrant used in ASTM D2896 is Perchloric Acid. This is a very strong acid that is corrosive, an oxidizer and may cause organ damage over prolonged periods of exposure. As an oxidizer, it has been known to cause explosions. One of the solvents used in this test is Chlorobenzene, a chlorinated solvent that is extremely harmful to the environment. In fact, it is so harmful that it is banned in many countries around the world. Suffice it to say, the chemicals used in this test are dangerous to those who perform the test.

Perchloric Acid

On February 20, 1947, a violent explosion rocked the city of Los Angeles, California resulting in the deaths of 17 people and the wrecking of 116 buildings including the complete demolition of the O’Connor Electro-Plating Works, source of the blast. From the mass of information and misinformation, which varied from the early rumors of a powerful new army explosive, prematurely set off, to the decision, almost three weeks later, of the coroner’s jury that the explosion may have resulted from the contamination of a solution of perchloric acid and acetic anhydride with “easily oxidizable materials,” perchloric acid emerged as the nation-wide object of underwriters’ investigations.

 

Right Tests, Right Fluids, Right Equipment, Right Environment

My other concerns are with providing fluid analysis results that use the right tests on the right fluids for the right equipment in the right environment. Tests and test methods could change based on all of those factors, and too many customers request ASTM D2896 to measure an oil’s base number for good, yet misguided, reasons.

Background on Base Number Testing

First, a little bit about base number and how it is measured. The results from a base number test is vitally important to you from a maintenance and reliability aspect. Alkaline elements are added to base oils to react with the weak acids formed during diesel fuel combustion. The alkaline reserve neutralizes the acids and form slightly basic degradation products that are no longer capable of reacting to the weak acids. Eventually the alkaline reserve in the lubricant is depleted to the point where the oil can no longer protect equipment from acid corrosion.

Brief History of ASTM D2896

ASTM D2896 was designed purely to determine alkalinity reserve in new lubricants. I’ll repeat that last bit, as it is the crux of the issue; new lubricants. The test uses Perchloric Acid as a titrant because it reacts quickly and reliably with the large alkalinity reserve in new lubricants. ASTM D2896 then measures the titration product to determine the strength of the alkaline reserve. This method is reliable, which is why it is still used by oil manufacturers and listed on oil spec sheet.

However, perchloric acid is too strong to use when weakly-basic degradation products are present, especially oils used in internal combustion engines. When ASTM D2896 is applied to in-service fluids, the perchloric acid reacts to every basic element available. Instead of measuring the alkaline reserve like we want, it also titrates with the degradation products. This can result in what ASTM refers to as a “falsely exaggerated” or sometimes even “falsely understated”. For these reasons, ASTM says:

“When the base number of the new oil is required as an expression of its manufactured quality, Test Method D2896 is preferred, since it is known to titrate weak bases that this test method (ASTM D4739) may or may not titrate reliably.”

 

ASTM D4739 – A New Method?

The solution required a new method for base number testing in in-service fluids. ASTM D4739 substitutes Hydrochloric Acid as the titrant rather than perchloric acid. Because hydrochloric acid is weaker than perchloric acid, it only reacts to the alkaline reserves and not the slightly-basic degradation products.

 

 

Further, ASTM D2896 can give very poor inflection points or even multiple poor inflection points on in-service lubricants, especially if they are seriously degraded. This makes giving accurate and reliable results challenging at best, and flat out wrong, at worst. To make this scenario even worse, perchloric acid will react with wear metals in the in-service fluids. This will result in more titrant being consumed, giving a higher base number results. This can result in hiding a problem that could be resolved if you knew the real value.

The ASTM methods are pretty clear on this. ASTM D2896 should be used for new lubricants and ASTM D4739 should be used for in-service applications. However, many customers request ASTM D2896 on in-service lubricants. Why is that? I believe the main driver of this is the fresh lubricant specification or certificate of analysis lists ASTM D2896 as the method for base number testing.

ASTM D4739 / ASTM D2896 Scenario

An important part of the discussion is this essential fact- not all the tests performed on a lubricants certificate of analysis are pertinent for condition monitoring of in-service lubricants. Many tests performed on fresh lubricants are designed to prove that all additives have been added to the blend as a quality control test. As a result, if you only request testing based on your certificate of analysis from the manufacturer, you are not getting the right data to make an accurate and reliable maintenance recommendation. Best case scenario, you are paying for testing that gives you no or limited information on the maintenance and reliability of your equipment. Worst case scenario, you could be getting misleading results. This is particularly the case in the ASTM D4739 / ASTM D2896 scenario.

Change to ASTM D4739

As a result, ASTM D4739 is definitely the method of choice for in-service fluids. Do yourself a favor, make the change today and improve the quality of the information you can use to improve your reliability.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 7, 2020