Ion Chromatography Testing Can Catch Cooling System Concerns Early

Have you received a recurring action on your coolant analysis report? Are you noticing recurring concerns with your pH, corrosion metals, and/or inhibitor depleting rapidly? Have you ever topped off the system with water only?

With basic coolant testing a piece of the puzzle to help identify the root cause of the concern in the cooling system may be missing. Basic testing will identify concerns and provide recommendations however, there may still be more going on in the system that basic testing will not identify.

Why Should Advanced Ion Chromatography (IC) Coolant Testing Be Added?

The advanced Ion Chromatography (IC) testing will determine glycol degradation, contamination and coolant inhibitors of nitrate, nitrite and possibly phosphate. IC testing will provide additional valuable information regarding your cooling system health.

IC testing will help find concerns with:

  • Hot spots (plugging of the system)
  • Combustion gas leaks
  • Electrical ground issues
  • Contamination concerns

Each concern above will cause a chemical reaction within the cooling system, resulting in failure overtime. Approximately 40% of engine failures can be traced back to a concern in the cooling system. Including IC testing to your routine coolant analysis program will provide more information on what is going on in the cooling system. Concerns can be caught early allowing for scheduled down time and less engine failures due to the cooling system.

What are Glycol Degradation Acids?

Degradation acids will form when ethylene or propylene glycol chemically breakdown. When degradation acids are present further glycol breakdown will occur as the acids present will act similar to a catalyst causing further glycol degradation over time.

Causes for degradation acids:

  • Localized overheating
  • Restriction of coolant circulation
  • Low coolant pressure
  • Mechanical concerns
  • Age of fluid

Degradation acids will hinder the coolant properties over time and may result in a decrease of the coolants ability to protect the metals in the system. Identifying the root cause is key to maintain the fluid and equipment. 

What Contamination Concerns can be Found?

Ion Chromatography will indicate contamination of chloride and sulfate. Chloride and sulfate are a concern if present in the system. Chloride can form hydrochloric acid, decarbonizes iron and is extremely corrosive. Sulfate can form sulfuric acid and combined with calcium to form scale in the system.

Causes for contamination:

  • Water source not meeting specification
  • Combustion gases
  • Air leak
  • Flush water left in system

Sulfate, when trending with prior history, can find an early combustion gas leak concern in the cooling system before an action is indicated on your lubricant analysis report. The coolant analysis will actually catch the concern and action can be made before a significant amount of coolant can mix with the lubricant leading to further engine wear.

Chloride contamination could be due to a venting concern allowing outside air to enter the system. Both chloride and sulfate can be present in a water that does not meet specification. Just a quick top off with water can cause a failure over time.

Catching contamination early with Ion Chromatography testing will provide the proper actions needed to correct the source of contamination before corrosion and/or chemical reactions occur harming the metals in the engine.

Are there benefits of reporting Nitrite and Nitrate?

Nitrite and nitrate may or may not be part of the coolant formulation as a corrosion inhibitor. The Ion Chromatography method is a more accurate method to determine nitrite concentration. The inhibitor if present, should be maintained for proper corrosion protection. Results can find concerns of low inhibitor, or mixing if inhibitor levels are not consistent with a new fluid reference. Trending both inhibitor levels can detect early concerns of chemical reactions, such as an electrical ground issue where nitrite could convert to nitrate.

Reach out today! Add Ion Chromatography testing to your program.

Advanced coolant testing will provide more details of possible chemical reactions occurring in your equipment and/or finding the root concern of recurring high severities found during basic coolant testing. Trending results from IC will provide more information on the fluid and find possible mechanical concerns in the cooling system. Catching system concerns early will help keep the cooling system functioning correctly and reduce unscheduled down times increasing your return of investment.

Check out our Technical Bulletin to find out more information on how Ion Chromatography (IC) Testing works:

Click to Download

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published August 26, 2020

The Secret to Making Sampling Easy

That sounds like an infomercial title, right? But it’s not often that you’ll find a product that will:
  • Make your daily life easier
  • Quickly pay for itself
  • Lower chances of contaminating your sample bottle
If this is what you’re looking to achieve, sample valves are what you want!

You won’t even need to shut off equipment to collect a sample. Valves reduce the equipment you need to use and speed up sampling by 3-7 minutes on average. All of that saved labor adds up quickly to pay for the cost of the sample valve and lower your bottom line for years to come.

But wait, there’s more…

Sample valves are installed directly into your equipment, typically in a port made by the manufacturer for this purpose. This makes it easy to access the fluid in the system while ensuring no environmental dirt or moisture contaminate the remaining fluid. The ports also allow you to extend lines to a common rail so remote reservoirs can be accessed quickly, easily, and safely.

Push-button valves use the system’s pressure so all you need is the bottle to collect a sample – ditch that pump and tubing! To ensure dirt doesn’t get in your sample bottle, order a probe-style valve and use a needle-and-cap kit to collect the cleanest sample possible.

Unpressurized systems need a little motivation to pull quality samples quickly. Probe-and-needle valves can be used with vacuum pumps for the cleanest samples possible. But what do you do when you have a large reservoir and the fluid doesn’t mix at the sides? Just install a sample valve with a pilot tube to extend into where the fluid flows.

If you have equipment, there’s a valve for you. Download this guide to learn more about sample valves.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 29, 2020

What To Do if You Have a Coolant Leak

So, you’ve received your oil analysis report back recommending an inspection of the cooling system. (You may or may not also find an oily sheen in the cooling system.) When a lubricant report is received indicating coolant contamination, the root cause of the problem must be found and corrected.

Are you only looking at half of the data?

An internal leak will require further maintenance to be performed to correct the internal contamination, such as a possible new engine rebuild. Have you determined the root cause for the internal leak? Internal leaks are not just something that will be expected to occur at some point in your equipment life expectancy. The same could be said for concerns with your lubricant analysis report indicating higher oxidation values and not being able to optimize the lubricant drain interval. Identifying and reacting to the lubricant analysis recommendations may not always identify the root cause when only testing the oil.

Why would an internal leak or shorter drain intervals occur?

One possible reason is from overheating. Overheating will put more stress on both the lubricant and the coolant and increase acid build up to occur, causing corrosion to the metal surfaces of the engine eventually leading to soft spots. The overheating may not be found on your dashboard but the internal temperatures in the engine may still be elevated. The higher temperatures will cause stress to the lubricant resulting in oxidation and acid build up which ends up thickening the oil. At this point the oil cannot provide the adequate lubricant regime necessary to help protect the engine from wear. Having metal to metal contact will not only increase the engines internal operating temperature, it will also cause soft spots to occur causing cracks and coolant to leak into the engine. As a result this can lead to engine failures, unexpected downtime, maintenance and repair costs.

Are you regularly testing the cooling system within your equipment?

OEMs have indicated approximately 40%, if not higher, of preventable premature engine failures can be traced back to problems in the cooling system. Concerns in the cooling system may be present without a visible indicator and cooling system failures are less common. This is one reason some may not think to test their coolant. However, understanding how the cooling system functions and how the fluid properties can impact the cooling system is a critical component to the overall engine performance.

The purpose of your cooling system is to:

  1. Circulate the coolant throughout the system
  2. Remove heat from the engine
  3. Dissipate heat from the coolant

The cooling system concerns that are not corrected early will hinder the performance of the engine and eventually lead to a premature engine failure. Adding coolant testing to your fluid analysis program will help aid in catching coolant related issues and/or determine if concerns are present due to out of date maintenance procedures. Routine testing of the cooling system will provide recommendations and correction needed to maintain the cooling system and fluid properties. If concerns are not corrected or monitored then internal leaks and/or shorten lubricant drains may occur causing increased wear and damage to your equipment.

Test all fluids in your equipment

Testing all fluids within the equipment by utilizing an effective fluid analysis program will help reduce unexpected down times and/or equipment replacements – resulting in an increase return of investment (ROI). Reach out today to discuss how improve your overall fluid analysis program by testing all components in your equipment.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 21, 2020

Get the Most Value from Your Program: Advanced Testing

Oil Analysis: The First Question

The first question of any new, or redefined oil analysis program should be, what do I want to achieve from the program? The answer to this question will determine how the program is managed, and more importantly, what testing will be performed on the samples. All samples will receive an element of three groups of testing:

  1. Wear metal assessment
  2. Contamination
  3. Fluid properties

But the depth of testing in these three groups can change, depending on what you want to achieve.

1. Wear Metals

Every oil sample tested will receive an evaluation of wear metals and elements, this is taken as standard in the industry. But the number and type of tests performed in addition to this determine what level of testing is performed, and therefore what level of information you will receive on a sample report. Many companies will go with testing the minimum, so the price per sample is lower.

Does basic testing add significant value to a program or improve reliability?

An example of this could be testing a diesel engine oil without including a base number. This means a true evaluation of the optimum oil drain interval is not possible. Another example would be testing a hydraulic oil with performing an ISO code & particle count so that the laboratory cannot assess the true cleanliness of the fluid. Both of these examples could be considered vital tests in terms of improving reliability and reducing maintenance costs, but are not always included in some basic testing programs.

2. Contamination

More importantly, monitoring and reporting actual accurate levels of contaminants present within oil samples is critical because the amount and type of contaminant present will pose a different set of problems at different levels as shown in Tables 1 and 2  below (related to acceptable levels of water contamination in oils). The majority of OEMs provide guidelines for various contaminants and acceptable levels for contamination for their specific systems. Below are a few examples of results of water contamination results and findings from standard testing compared to advanced testing methods.

  • Diesel Fuel Dilution
    • Stating that diesel fuel dilution is present in engine oil by a simple Flash Point or FTIR evaluation is not an effective method for determining contamination. Diesel dilution condemning limits stated by OEMs can range from 3% to over 5% and therefore an accurate amount of the contaminants present via Gas Chromatography in the oil (diesel in this case) is also now a pre-requisite when looking to monitor contamination levels in samples.
  • Water Contamination
    • Performing a test on an oil sample using the hot plate test method may not always able to detect the exact amount of water within the sample. An advanced test, such as Karl Fischer, would give you more accurate results, especially the lower levels of water.

Table 1

Water Content Result Reported Maintenance Action & Decision
Lab 1 result Water present Check unit for source of contamination, but as quantity of contaminant is not known, do I change oil?
Lab 2 result Water > 0.2% Check unit for source of contamination, but as definitive level of contaminant is not known do I change oil?
Lab 3 result Water = 0.35% Check unit for source of contamination, but as level is below OEM recommendation of 0.45% no oil change required.

 

 

 

 

 

 

Table 2

Water Content Result Reported Maintenance Action & Decision
Lab 1 result Water present No problem reported, continue to monitor as normal
Lab 2 result Water <0.1% No problem reported, continue to monitor as normal
Lab 3 result Water = 432ppm Check unit for source of contamination and change oil as level is above acceptable level of 350ppm for this application.

Is it best practice to simply state that ‘water is present’, or would an accurate result in either percentage of parts per million (ppm) add significant value to maintenance decisions?

In addition, when looking at reporting the samples’ cleanliness levels via ISO code & particle count, what aids the customer more, the simple ISO code, or the code complimented with a full breakdown of the number of particles at each micron size?

ISO CODE
22/19/13
ISO CODE >4 μm >6 μm >10 μm >14 μm >21 μm >38 μm >70 μm >100 μm
22/19/13 20959 3656 340 73 22 2 0 0

3. Fluid Properties

The analysis of a lubricants’ overall condition helps determine the future health of equipment and subsequent oil changes or top-ups that may be required. Every laboratory should offer a wide range of fluid condition analysis services based on the machinery that the oil has been sampled from. These tests are a great barometer for the overall condition of the component and the actual lubricant itself. Performing testing on condition is not only an economically viable option, but it should be considered standard for any oil sample. In today’s cost-conscious climate and increased environmentally concerned conditions, extending lubricant life will help decrease costs and protect the environment from early lubricant disposal.

Including Base Number and Acid Number on an engine oil sample and Acid Number alone on industrial oils paired with the utilization of advanced data analysis and interpretation systems makes it possible to make a judgement on how much further an organization can safely extend an oil drain – if the correct parameters are being monitored and the associated recommendations are being followed. These services are not always included in some basic testing programs – this means you could be missing out on significant savings if these are ignored – both financial and environmental.

Any testing is better than none, but upgrading your samples to a more advanced testing will add significant value, proactively improve reliability and save more equipment.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 9, 2020

Is Your Grease Headed to Failure?

Many maintenance technicians can tell you the health of their equipment just by the way it sounds and their maintenances and lubrication schedules. However, if you ask about their greased components, most say we grease it either on schedule or when it sounds like it needs it. Unfortunately both of those answers cannot tell you the health of those grease components. Your grease could be headed to failure without giving you any external indication.

Problems with a Grease Schedule

If you grease on a schedule, you could be greasing that unit too much and as you add that grease, you have to ask how much is too much. If you happen to be greasing too much, then you could be over lubricating your bearings which can cause the balls or rollers to slide along the race rather than turning. Then, the grease could actually churn. This churning mechanism could ultimately bleed the base oil from the grease. What will remain to lubricate the bearing is a thickened grease with little or no lubricating elements. Since there is not enough lubricating oil, and there’s excess heat from the churning, the grease would start to harden. The final outcome is bearing failure and equipment downtime.

Waiting to Re-Grease

On the flip-side, if you wait until it sounds like it needs grease before re-greasing, then you have already starved the component and the damage is already done. Putting grease in will only quiet it down but the final outcome is bearing failure and equipment downtime.

Prevent Failure and Downtime

The proper way to prevent greased equipment failure is to monitor the component through regular grease analysis. By monitoring not only the wear but the grease properties, you can truly know how the grease is holding up. Under operation heat, load and external environmental influences can degrade the properties of the lubricant and its ability to provide lubrication of your greased equipment.

Learn more about our grease testing solution here.

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published June 23, 2020

Dangers of ASTM D2896 Base Number Testing

 

ASTM D2896 Base Number

The first concern I have with ASTM D 2896 is a concern of laboratory safety, which I am quite concerned with and most customers are unaware of. Simply put, the safety concerns of ASTM D2896 are considerable. The reagents used for this test are basically some of the most hazardous I have ever encountered in my professional career.

Hazardous Chemicals

The titrant used in ASTM D2896 is Perchloric Acid. This is a very strong acid that is corrosive, an oxidizer and may cause organ damage over prolonged periods of exposure. As an oxidizer, it has been known to cause explosions. One of the solvents used in this test is Chlorobenzene, a chlorinated solvent that is extremely harmful to the environment. In fact, it is so harmful that it is banned in many countries around the world. Suffice it to say, the chemicals used in this test are dangerous to those who perform the test.

Perchloric Acid

On February 20, 1947, a violent explosion rocked the city of Los Angeles, California resulting in the deaths of 17 people and the wrecking of 116 buildings including the complete demolition of the O’Connor Electro-Plating Works, source of the blast. From the mass of information and misinformation, which varied from the early rumors of a powerful new army explosive, prematurely set off, to the decision, almost three weeks later, of the coroner’s jury that the explosion may have resulted from the contamination of a solution of perchloric acid and acetic anhydride with “easily oxidizable materials,” perchloric acid emerged as the nation-wide object of underwriters’ investigations.

 

Right Tests, Right Fluids, Right Equipment, Right Environment

My other concerns are with providing fluid analysis results that use the right tests on the right fluids for the right equipment in the right environment. Tests and test methods could change based on all of those factors, and too many customers request ASTM D2896 to measure an oil’s base number for good, yet misguided, reasons.

Background on Base Number Testing

First, a little bit about base number and how it is measured. The results from a base number test is vitally important to you from a maintenance and reliability aspect. Alkaline elements are added to base oils to react with the weak acids formed during diesel fuel combustion. The alkaline reserve neutralizes the acids and form slightly basic degradation products that are no longer capable of reacting to the weak acids. Eventually the alkaline reserve in the lubricant is depleted to the point where the oil can no longer protect equipment from acid corrosion.

Brief History of ASTM D2896

ASTM D2896 was designed purely to determine alkalinity reserve in new lubricants. I’ll repeat that last bit, as it is the crux of the issue; new lubricants. The test uses Perchloric Acid as a titrant because it reacts quickly and reliably with the large alkalinity reserve in new lubricants. ASTM D2896 then measures the titration product to determine the strength of the alkaline reserve. This method is reliable, which is why it is still used by oil manufacturers and listed on oil spec sheet.

However, perchloric acid is too strong to use when weakly-basic degradation products are present, especially oils used in internal combustion engines. When ASTM D2896 is applied to in-service fluids, the perchloric acid reacts to every basic element available. Instead of measuring the alkaline reserve like we want, it also titrates with the degradation products. This can result in what ASTM refers to as a “falsely exaggerated” or sometimes even “falsely understated”. For these reasons, ASTM says:

“When the base number of the new oil is required as an expression of its manufactured quality, Test Method D2896 is preferred, since it is known to titrate weak bases that this test method (ASTM D4739) may or may not titrate reliably.”

 

ASTM D4739 – A New Method?

The solution required a new method for base number testing in in-service fluids. ASTM D4739 substitutes Hydrochloric Acid as the titrant rather than perchloric acid. Because hydrochloric acid is weaker than perchloric acid, it only reacts to the alkaline reserves and not the slightly-basic degradation products.

 

 

Further, ASTM D2896 can give very poor inflection points or even multiple poor inflection points on in-service lubricants, especially if they are seriously degraded. This makes giving accurate and reliable results challenging at best, and flat out wrong, at worst. To make this scenario even worse, perchloric acid will react with wear metals in the in-service fluids. This will result in more titrant being consumed, giving a higher base number results. This can result in hiding a problem that could be resolved if you knew the real value.

The ASTM methods are pretty clear on this. ASTM D2896 should be used for new lubricants and ASTM D4739 should be used for in-service applications. However, many customers request ASTM D2896 on in-service lubricants. Why is that? I believe the main driver of this is the fresh lubricant specification or certificate of analysis lists ASTM D2896 as the method for base number testing.

ASTM D4739 / ASTM D2896 Scenario

An important part of the discussion is this essential fact- not all the tests performed on a lubricants certificate of analysis are pertinent for condition monitoring of in-service lubricants. Many tests performed on fresh lubricants are designed to prove that all additives have been added to the blend as a quality control test. As a result, if you only request testing based on your certificate of analysis from the manufacturer, you are not getting the right data to make an accurate and reliable maintenance recommendation. Best case scenario, you are paying for testing that gives you no or limited information on the maintenance and reliability of your equipment. Worst case scenario, you could be getting misleading results. This is particularly the case in the ASTM D4739 / ASTM D2896 scenario.

Change to ASTM D4739

As a result, ASTM D4739 is definitely the method of choice for in-service fluids. Do yourself a favor, make the change today and improve the quality of the information you can use to improve your reliability.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 7, 2020

The Importance of Submitting a Baseline Reference Sample

What is a Baseline Reference Sample?

A baseline reference sample is a sample of new or unused product submitted to the fluid analysis laboratory. Submitting a baseline sample allows you to gain an understanding of the starting values of the product in use. It is important that the baseline sample being submitted has not been introduced into a system as this can introduce variables such as commingling, contamination or degradation. Ideally the sample should be pulled from a verifiable source such as a bulk tank, tote, pail or bottle.

What are the benefits of submitting a Baseline Reference Sample? 

It is important to have an understanding of what the starting values are for your lubricant. Knowing where the base number (BN) and/or acid number (AN), oxidation and nitration values start will provide a more precise prediction of how the used oil sample should be flagged as the lubricant degrades. Likewise, if the additive levels are known then it is easier for the Data Analyst to determine if the lubricant was actually installed in the machine.

What does the laboratory do with my Baseline Reference Sample?

Baseline samples are account specific, meaning they will be used on the account for which they were submitted and appear on used oil sample reports using the same product. When submitting a baseline sample, it is important to correctly fill out the sample paperwork to indicate it is a baseline sample by checking the box labeled “baseline reference”.  Selecting this box will automatically enter baseline sample as the component type.

Being careful to provide the complete product information (manufacturer, product name and viscosity grade) and using a specimen from a known, verified source will ensure the information generated by the laboratory will be useful and reliable for comparison against future used or suspect samples. Once an account has an established baseline reference sample, it is important that used samples with the same product have the product information listed exactly the same as the baseline sample. This will ensure the baseline and the used samples are linked for comparison on your reports.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published June 9, 2020

Optimizing Intervals in Energy-Producing Turbines

Wind turbines are playing an increasingly important role in greener energy production. This means it is vital that these units operate at optimum capacity for longer periods. This requires a high level of equipment reliability and, due to the remote locations or access difficulties, all types of maintenance need to be planned at optimum intervals to ensure maximum uptime and reductions in total cost of ownership (TCO).

The operating fluids inside a turbine (lubricating oil in gearboxes and hydraulic systems, fluids used in the cooling systems and the greases used) all play a significant part in optimizing operation of the wind turbine. All of these operating fluids should be monitored closely to determine fluid condition, levels of contamination and measure levels of wear metals generated within each system.

What is also becoming more important is the connectivity and integration of all of these fluid sample results with other measurements and operational readings taken from the turbines. With the importance of planning maintenance at optimum operational intervals and reducing unscheduled downtime, monitoring these sample results within OEM asset management or ERP systems, ensures the whole O&M process is made far more efficient.

Using POLARIS Laboratories® unique DataConnect service, companies can benefit from work orders being automatically generated from critical samples within your own operating system, as well as assessing the sample reports alongside other readings to ensure maximum uptime of the turbines.

Using a global fluid analysis laboratory will also ensure operators benefit from having all of their data in a single silo, again making the process of monitoring and mining sample data more consistent and efficient.

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published May 27, 2020

It’s More Than Fluid Analysis

You’ve made the decision to use POLARIS Laboratories® as your trusted fluid analysis provider, a great start to a successful fluid analysis program. Now are using all the features available? POLARIS Laboratories® provides more than fluid analysis. Learn about how our convenient mobile app can help you manage your program in real time.

Real-Time Alerts

Did you know you can monitor your fluid analysis results, receive real-time alerts on high severity reports and submit online data  for your fluid analysis directly from the HORIZON® mobile app?

The HORIZON® mobile app is just another great feature provided by POLARIS Laboratories® to help you manage your fluid analysis program. With customizable settings to receive alerts of the reports that are most vital to the success of your program. Once an alert is received you have the ability to review a summary of the report or with a single click see the full report details.

Submit Your Sample Online

MOBILE SAMPLE SUBMISSION HOW TO VIDEO

The online sample submission capability of the mobile app is a time saver. Your mechanics now have the ability to select equipment from their phone, scan a QR code with their phone, enter a few fields of information (such as component time and lube time) apply a QR sticker to the bottle and then obtain the sample and mail it directly to the laboratory.No more errors from hand written labels and a much faster process!

But the great features don’t end there. Do you have equipment that you need to transfer from one location to another? You can now keep the data accurate for your fluid analysis program mirrored with physical transfers, and you guessed it, you can do this directly within the mobile app.

Easy Equipment Transfer

What about adding new equipment/components? With just a few fields of information to enter you can add this from the mobile app as well!

At POLARIS Laboratories® we consistently strive to help our customers not just simplify their fluid analysis program but help ensure that your data is always timely and accurate.

The mobile app is free and available for iPhone or Android. Give it a try today, you will not be disappointed.

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published April 8, 2020

Sink or Swim: Fluid Analysis + Marine

In today’s shipping environment, uptime, safety, equipment life extension and increasing oil drain intervals are, and should be, the focus of any fluids analysis program.

Realizing the most value from your programs, whether lubricants, coolants, fuels, grease or filter debris analysis can help avoid:

  • Unscheduled down time and unplanned maintenance and associated costs for repair
  • Urgent requirements for lubricant replenishment inventory on short notice or in remote areas
  • Extra lubricants expense incurred by changing the oil unnecessarily without the benefit of a historical analysis report
  • Undetected problems manifesting into eventual catastrophic equipment failure

Oil analysis has been around since the 1940’s but, has matured significantly since then. Equipment has also evolved as design or environmental pressures have placed requirements for some equipment to be lighter in weight, be more fuel efficient and be manufactured to higher tolerances with more exotic materials. The result often places more stress to the lubricant, often with a lower volumes of lubricant in circulation to save weight.

Standard Practices

Take for example, marine or power plant engines with anti-polishing rings in the cylinder liners. The use of anti-polishing rings result is lower oil consumption which is an advantage for the equipment owner, but already places higher duty on the lubricant due smaller oil sump volumes and less need for frequent oil top ups. Monitoring critical parameters such as base number with laboratory and onboard testing has worked well and is already proven to be an industry standard practice.

Seeing An ROI

The benefits of your fluids analysis program can very easily pay for itself by being able to more closely monitor equipment and fluid condition, help manage implementation of oil drain interval programs, and in all cases provides information on oil and machinery condition necessary to make informed decisions about operational reliability and future maintenance.

With management reporting tools, a fluids analysis program can bring all of this information onto one platform, making interrogation of key performance indicators across assets much easier to visualize. Used properly, outliers can be detected more quickly. Of course, oil analysis is only one part of a complete maintenance program and should be used in conjunction with vibration, acoustics and thermography where applicable.

Free webinar on Fluid Analysis in the Marine Industry

If you’re interested in learning about fluid analysis as it relates to the maritime industry, I encourage you to attend our upcoming webinar on June 16. There is no cost to join and open to everyone!

Sink or Swim: How Fluid Analysis Saves Marine Engines

June 16 at 11 a.m. ET

See what will be covered and register here.

To learn more about POLARIS Laboratories® please contact us. We will show you the POLARIS Laboratories® way of helping you build a custom fluids analysis program with all the benefits of linking to your CMMS program, providing you with actionable fluids analysis commentary, and an online reporting portal, all with the benefits of being an independent laboratory and helping you save money.

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published March 25, 2020