Seeing Proven Savings: One Report at a Time

Fluid analysis is a powerful tool in the preventive maintenance toolbox of many equipment and maintenance managers in industries ranging from construction to aggregates to mining to marine. Efficiently managed programs provide considerable benefits that translate directly into maintenance cost savings for industries who rely on the operation of their equipment.

When operating equipment, it’s inevitable to see some wear as the machine operates overtime. One of the most valuable advantages of fluid analysis is detecting early signs of wear within equipment by analyzing wear particles within the oil.

Saving $80,000 in Engine Replacement Cost

One of POLARIS Laboratories® customers in the Marine industry was able to save the entire replacement of an engine by performing recommended actions on a high severity lubricant analysis sample report. After collecting an oil sample during a break in the oil change schedule, the company’s sample report returned at a high severity. The recommended maintenance action based on the test results and interpretation was to borescope the cylinders, in which the team observed scoring on the cylinder liners.

Report showing high levels of iron with a recommendation to check cylinders

While continuing to investigate the concern, it was observed that the bottom of the engine piston crown showed signs of deterioration. After discovering this, a strategic maintenance decision was made to replace all six pistons, liners and connecting rods.

As the company shares this story with POLARIS Laboratories®, it was noted that there were no other condition monitoring indications or alarms that showed there was an engine issue – the concern was only identified based on the test results and recommendations on the lubricant analysis sample report. Without the sample report indicating abnormal wear and suggestion to evaluate the cylinders, the problem would not have been identified and would have led to a total engine loss and $80,000.

Avoiding Lost Production, Downtime and $260,000+ in Engine Loss

For a POLARIS Laboratories® customer in the Aggregates industry, equipment downtime can be detrimental to production, customer satisfaction, labor costs and operations. The company had coolant analysis report came back indicating a high freeze point which, if not addressed, would have caused the engine block to freeze resulting in a complete engine replacement of $135,000 (this does not include the downtime if the asset was out of production for repairs).

In another instance, the company was able to avoid a full axle rebuild that would have cost $50,000 by addressing a simple issue and replacing the oil after a lubricant analysis report came back with results indicating a leak in the axle which had resulted in dirt contamination causing wear.

Report showing high levels of sodium with a recommendation to check cooling system for leaks

A very recent equipment save through oil analysis for the company involved receiving a report back that indicated high levels of lead. The team was able to proactively replace the NRS coolers before the engine could experience failure – a failure that would have cost the company $75,000 to repair, plus the additional downtime loss.

Fluid analysis is a proactive, preventive, predictive and cost-effective condition monitoring tool proven to minimize unexpected and un-budgeted maintenance costs by detecting signs of early wear and contamination. Through interpreting test results and maintenance recommendations provided by the data analysts, maintenance and equipment managers can take action before failure even has a chance.

Proven Impact. Proven Uptime. Proven Savings.

Let us prove it to you.

Published November 14, 2023

Revolutionized Maintenance Training at INTEGRATE

Where can you find education and training designed to give you the tools you need to see success along your reliability journey?

The answer: at the 2023 Reliability Summit | INTEGRATE. 

We’ve revolutionized our annual maintenance training conference to provide all-encompassing training on every aspect of your fluid analysis program. From expanding your use of the HORIZON® platform, to understanding how to grow your program, learning how sampling can be made easier, to increasing understanding of result interpretation, to eliminating silos by integrating fluid analysis data into your maintenance management system, INTEGRATE is the one place you need to be.

View this year’s line up of speakers and learning sessions

In one trip to Indianapolis in October, you and your maintenance teams can gain new ideas, insights and knowledge to kick your maintenance into high gear and see your reliability program reap the benefits of effective, impactful fluid analysis.

Gain New Perspectives

Not only will you gain education, but you’ll also gain new perspectives. During this 2-day exclusive event, hosted by POLARIS Laboratories® at The Alexander in Indianapolis, you’ll have the chance to:

  • Meet one-on-one with your account representative
  • Ask subject matter experts your questions
  • Learn what others are doing to improve their reliability program
  • Network with fellow maintenance professionals to learn and grow from their experiences

See Operations in Action

When you attend INTEGRATE, you get more than education through learning sessions, you get a first-hand look at not one, but two facilities through exclusive tours – and a chance to see inside POLARIS Laboratories’ headquarters laboratory in Indianapolis.

Cummins Augmented & Virtual Environmental Lab

Experience a tour of Cummins technical center and environmental lab and see what Cummins engineers and scientists are creating, testing and evaluating to prepare for the future of manufacturing. See processes and devices, including 3D printers, tomography x-ray systems and Cummins’ use of virtual reality.

 

U.S. Aggregates Facility & Mine Tour 

Get a glimpse of U.S Aggregates’ 460-acre facility and see a glimpse into their mining operations. See how U.S. Aggregates mines and processes limestone, while getting a first-hand look and feel of a raw material reduction with the use of explosives.

 

POLARIS Laboratories® 

This tour gives you a first-hand look inside our state-of-the art laboratory and headquarters facility in Indianapolis. From the time your sample hits the facility doors, to laboratory testing, to data analysis and customer support, and everything in between, this tour gives you an exclusive look into our laboratory daily operations.

These tours have limited spots, first come first served – register early if you want a seat on the tour. See the available tours and information here.

Discover New Solutions

Our annual training conference would not be possible without our event sponsors. We’ve teamed up with several industry solutions providers (lube manufacturers, filter solutions, sampling supplies, data integration) to give you tools to advance your programs and expand your maintenance practices. Each sponsor will have an exhibitor booth at the conference as well. Please feel free to stop by their booths to see what they have to offer your program!

It’s All Here in Indianapolis

I’ll leave you with this question, where else can you find lube manufacturers, OEMs, testing experts, reliability professionals, integration solution providers and everyone in between? At INTEGRATE October 2-4 in Indianapolis.

From the Data Analyst: How Sample Information Affects Limits and Analysis

Two questions our Data Analysis team often receives from fluid analysis customers are “What information is necessary to analyze our samples?” and “Why is this information so important?”

Whether your sample is defined as a grease, diesel fuel, lubricant or coolant, there are complex interpretation factors accounted for each test result of the respective application. Aside from establishing the appropriate testing slate applied to a fluid, test limits may also vary and be comprised of SAE, ISO, POLARIS Laboratories®, OEM, industry charter and/or fluid manufacturer standards. Due to these reasons, it is imperative to supply as much relevant equipment and fluid information as accessible to your laboratory when submitting the sample for testing.

Here are a few scenarios… Without fluid information, a laboratory may not be able to see abnormal fluctuations for additive content or viscosity. The fluid’s basicity may become essentially depleted prior to detection, or the acidic levels may be too high for neutralization efforts. Without the specific equipment model, a laboratory may have to rely on generic data points to extrapolate typical wear accumulation. These limits may be too aggressive or not aggressive enough for the type of equipment tested. These are all exact scenarios we have previously experienced with customers.

For example, we may factor the following information when establishing statistical trends for wear metal content, lubricant properties and interpreted recommendations:

  • Equipment Type (e.g. engine)
  • Specific Application (e.g. diesel)
  • Equipment Manufacturer (e.g. Cummins)
  • Equipment Model (e.g. ISX)
  • Industry Type (e.g. logistics/transportation)
  • Lubricant Manufacturer (e.g. Chevron)
  • Lubricant Product (e.g. Delo 600 ADF)
  • Lubricant Viscosity (e.g. 15W40)
  • Filter Type (e.g. Full Flow)
  • Filter Micron Rating (e.g. 10 micron)
  • Sump Capacity (e.g. 14 gallon)
  • Time on Lubricant (e.g. 13,598 miles)
  • Time on Equipment (e.g. 124,600 miles)

While some equipment manufacturers have a ‘fixed’ wear limit table for operational guidelines, laboratories typically provide a more objective and literal statistical significance of normal wear accumulation. These statistics may reduce unnecessary calls for maintenance, which would otherwise lead to costly downtime or premature use of materials.

Read more in the Technical Bulletin

If you are unsure what information may be required to appropriately identify abnormal trends for your equipment samples, reach out to the laboratory for a list of the requisites and additional guidance. To receive an improved return on investment out of a lubricant, fuel, or coolant maintenance program, avoid delays or guesswork the laboratory may experience due to absent sample information.

Coolant Condition Monitoring: Comparing Testing

Include Cooling Systems in Regular Maintenance

Coolant testing is an important aspect of maintaining the cooling system. Part of your normal maintenance schedule should include inspecting the cooling system at every maintenance interval. During operation, the cooling system must 1) circulate coolant, 2) transfer heat away from the engine and 3) dissipate the heat through the radiator to the atmosphere before circulating back through the engine again. These three functions must occur efficiently to maintain the proper operating temperature. If the lubricant is showing increased wear, increase in viscosity and or oxidation, the cooling system should be tested. Cooling system health effects how well the equipment will operate and ensures the ability for the fluids in the system to protect the equipment metals from damage.

To verify the coolant properties are adequate, testing becomes a critical part of system maintenance. Field testing conducted on-site should be a used as a screening tool to determine if laboratory testing is required earlier than scheduled. Laboratory testing is a critical part of any fluid analysis program in addition to field testing.

Field Testing & Laboratory Testing

Field testing includes monitoring visual characteristics of the coolant using test strips to determine corrosion protection levels, pH and or freeze point. A handheld refractometer for testing glycol percent is another useful tool. Some limitations with field testing include: coolant with a normal appearance could be misleading, low precision and limited scope of testing. Most laboratory testing will report results in parts per million and detect various materials smaller than the eye can see. Laboratory testing can be used to determine the validity of concerns with corrosion of system metals, hard water contamination, early degradation breakdown of the glycol and other chemical properties. Laboratory testing is typically recommended to be conducted twice a year for normal use engines (Spring & Fall) and every quarter for high-hour or extreme duty engines.

There’s more to coolant analysis than testing coolant formulations – it’s about identifying problems within the cooling system that can be detrimental to engine performance and lead to premature engine failure. Below are some advantages and disadvantages of using coolant test strips and laboratory testing.

 

 

 

 

Proven Impact. Proven Uptime. Proven Savings.

Let us prove it to you.

Published February 9, 2023

Impact of Cold Temperatures on Your Cooling System

Coolant analysis can shed light on developing internal problems and catch concerns early before harmful problems can occur. Making the proper adjustments, when needed, is critical for maintaining proper cooling system performance.

How do Temperatures Affect Coolant?

When outside temperatures drop, proper freeze protection is required to avoid freezing or lack of coolant flow within the cooling system. When coolant freezes, it is most likely due to improper water-to-glycol ratio in the cooling system. Freezing can cause cracking and damage to the engine block and/or cooler allowing coolant and lubricant to mix. Once lubricant and coolant mix, further damage to the asset will occur leading to an expensive unexpected repair.

Finding the Proper Glycol Mixture

The proper glycol mixture with the water is crucial. Testing and maintaining the proper dilution provides a lower freeze protection, while also maintaining proper coolant properties. Water by itself has a freeze point of 32 degrees Fahrenheit (0 degrees Celsius). Using only water or too much water dilution will lower other coolant protection properties and can lead to system corrosion and lower than desirable pH control. However, too much glycol can cause the coolant to become too viscous, slow down coolant flow within the system and an over-saturation of corrosion inhibitors resulting in a precipitation concern. Plugging and/or inadequate coolant flow will impact proper protection for the cooling system and increase the time needed for the engine to reach proper operating temperatures. Lubricant not reaching proper temperatures allows for more metal-to-metal contact and engine wear concerns.

Routinely Test Your Cooling System to Avoid Problems

Overall, roughly 40% or so of preventable engine failures occur due to the cooling system not functioning properly. Most concerns in the cooling system are created by improper maintenance of the cooling system and coolant in service. Coolant chemistry reactions occur due to mechanical issues, coolant properties not being maintained and/or contamination of the system.

Learn more and find answers to your coolant testing and analysis questions here.

A proper fluid analysis program should include testing all fluids in the asset to have a better understanding of the fluid and equipment health. With trend analysis, you can catch concerns easier and faster and be able to take action on the proper recommendations to identify and address the issue before you have expensive, unexpected equipment downtime.

Winter temperatures should not keep your equipment out of service. Reach out today and pull a coolant sample to take out the guesswork out of knowing if the coolant in the system meets requirements for properly protecting your cooling system.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published January 10, 2023

How to Ensure Optimum Performance of Wind Turbines

With the increase of greener energy production, wind turbines are playing an increasingly important role. It is vital that these energy producing turbines operate at optimum capacity for extended periods of time. To do this, a high level of equipment reliability is critical and, due to remote locations or access difficulties, all maintenance needs to be planned at optimum intervals to ensure maximum uptime and reductions in total cost of ownership (TCO).

The operating fluids inside a turbine, including lubricating oil in gearboxes and hydraulic systems, fluids used in cooling systems and greases all play a significant role in optimizing operation of the wind turbine. All of these operating fluids should be monitored closely to determine the condition of the fluid, identify contamination and measure the levels of wear metals generated within each system.

Monitoring conditions through routine fluid analysis allows you to avoid unplanned downtime and perform necessary maintenance based what is actually happening within the unit rather than on the hours in operation or calendar days. Planned, predictive maintenance will get you to optimum energy production.

See the recommended testing for power generation equipment here.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published January 5, 2023

Addressing Industry-Specific Coolant Concerns with Analysis

Maintaining your cooling system does not have to be a complicated task or result in a neglected system. Understanding the fluid and equipment needs are key to proper maintenance in the field. With proper maintenance, the fluid and equipment health can provide the adequate functions to protect and remove heat from the component parts as needed.

Different applications and environments play a critical role and can exacerbate potential problems that may hinder the cooling systems ability to circulate, remove heat and then dissipate the heat before circulating again through the system. These functions are critical for the cooling system to maintain and protect the equipment. Adequate coolant testing based on industry can identify possible issues and/or concerns. Because the fluid chemistry plays a critical role in the cooling system’s ability to transfer heat and prevent corrosion which protects overall system health.

Off-Highway/Construction

In today’s market, there is a high demand to maintain equipment. The average life for most fleets is 3.5 to 4 years, however, due to supply issues and current economic conditions, many are looking to extend the life of their fleet. Common coolant system concerns that can result in issues are often overlooked until failure occurs. These concerns can be monitored as part of an effective predictive maintenance program:

  • High Temperature Issues
    • Glycol concentration
  • Chemistry Issues
    • Corrosion inhibitor
    • Mixing
  • Contamination
    • Scale hardness
    • Glycol degradation

Manufacturing

Higher ambient temperatures in different equipment types may require different fluids to maintain system temperatures. Monitoring and knowing the fluid types are key for proper maintenance. Common coolant system concerns to monitor include:

  • OEM Requirements and Coolant Supplier Support
    • Understanding equipment recommendation for glycol to water concentrations
  • Contamination Issues
    • Scale hardness
    • Glycol degradation

Power Generation

The duty cycle for this industry is “long term, low maintenance” requiring a focus on the coolant chemistry. Typically, fluids in the system are in a state of inactivity. Operating only when needed, when serviced or when demand is required. Common coolant concerns to monitor are:

  • Contamination
    • Degradation acids
    • Grounding concerns
    • Air leak
    • Scale
  • High temperature
    • Glycol concentration
      • Maintain proper OEM glycol to water concentration
    • Chemistry issues:
      • Corrosion inhibitor
      • Mixing

Marine

The marine industry encompasses a large range of coolant systems; however, these systems will be deployed with very little access to repair parts or facilities for extended times. Increasing the system’s integrity is critical. There is a wide variety of coolant formulations to meet proper regulations and knowing the coolant formulation is key for making adjustments when needed.

  • Chemistry issues
    • Mixing
    • Maintaining proper fluid corrosion inhibitor levels
    • Understanding equipment recommendation for glycol to water concentrations
  • Contamination issues
    • Air leaks
    • Internal/External contamination concerns

Transportation

With concerns of raising inflation, high fuel prices and changes in supply availability demands, keeping equipment in operation and extending all fluid life are becoming more of a necessity. Common coolant system concerns (often overlooked until related failure occurs) can be monitored as part of an effective predictive maintenance program.

  • High Temperature Issues
    • Glycol concentration
      • Freeze point and boil point protection
    • Chemistry issues
      • Corrosion inhibitor
      • Mixing
    • Contamination
      • Scale hardness
      • Glycol degradation

Learn more about test methods for coolants here.

Overall, all industries will have similar goals to maintain equipment and get the full life from the equipment as expected, if not longer. With proper fluid analysis and monitoring, concerns can be identified early before further damage internal causes a premature failure.

If you’re interested in learning more about recommended coolant testing and analysis for different industries, sign up for our upcoming webinar What Coolant Testing is Right for You? on August 25, 2022 at 11 a.m. ET.

Register Here

Reach out to our team to see how we can support your fluid analysis program and help increase uptime in your fleet.

Contact Us

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 28, 2022

Monitoring Extended Life Coolant with Testing

Using heavy-duty Extended Life Coolant (ELC) within your equipment means the coolant can reach a longer service life, according to coolant manufacturer guidelines. However, issues may arise during extended use. As these issues persist, the coolant’s ability to properly protect internal components can diminish over time.

Monitoring Coolant Properties and Conditions

Coolant manufacturers recommend monitoring engine coolant properties while in the system. Condition monitoring is a key tool and can assist with reaching the indicated lifespan of the coolant and identifying preventable problems like:

  • Contamination
  • Dilution
  • Evaporation
  • Degradation
  • Mechanical issues

Early detection of these problems with regular coolant sampling will provide maintenance personnel with proper recommendations and suggested corrections to address abnormal fluid conditions and can result in fewer failures.

Monitoring ELC with Testing

Monitoring ELC corrosion inhibitors require different test methods compared to test methods used for conventional supplemental corrosion additives (SCAs). Proper laboratory testing and fluid information are important when submitting ELC samples to the laboratory for routine testing. Some ELC formulations that only contain carboxylic acid corrosion inhibitors may utilize a different curve for determination of glycol concentration and ELC fluids require additional testing to monitor carboxylic acid. Understanding the proper testing needed, performing regular fluid analysis and making proper adjustments will assist with reaching the coolant’s extended lifespan.

Learn More About ELC Testing

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published January 21, 2022

How to Prepare Your Program for 2022

After the events of 2020 throwing operations out of whack, we had high hopes for 2021. Unfortunately, the maintenance industry continued to struggle – whether it be labor shortages or lubricant shortages. But, we’re here to give you a little hope for 2022. We’re here to help you get your maintenance program ready for a new year.

Here are some tips to regain control of your maintenance program:

  1. Take an inventory of your equipment and conditions
  2. Identify or reassess the importance (criticality) of each equipment in your processes
  3. Dust off and review maintenance records of each individual piece of equipment
  4. Identify specific needs for each piece of equipment

If fluid analysis is one tool you use to assess equipment conditions, then consider these:

  1. Collaborate with your Technical Business Consultant | Identify specific actions/activities that will enhance the impact of a well-managed fluid analysis program (our team’s contact info is listed below)
  2. Audit your Equipment List | Complete any missing information and move inactive equipment to a mothball account
  3. Review Your Users | Assess your list of active users and add new or remove those that are no longer needed
  4. Determine Training Needs | Identify gaps and schedule appropriate sessions and topics
  5. Develop and Participate in a Program Review | Program reviews highlight areas where the program is being successful, as well as those needing improvement. Specific equipment in need of attention can be identified as well.

If you are ready to refocus your maintenance and fluid analysis, contact your POLARIS Laboratories® Technical Business Consultant for assistance in reviewing your maintenance practices so you can take your fluid analysis program to the next level.

POLARIS Laboratories® Technical Business Consultants:

Henry Neicamp

hneicamp@polarislabs.com

Connect with Henry on LinkedIn

Julio Acosta

jacosta@polarislabs.com

Connect with Julio on LinkedIn

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published October 19, 2021

Why Accurate Sample Information is Important

Garbage In, Garbage Out

In this day and age, we have all encountered a situation where our personal data is not correct; it could be the bank has an old phone number or a store has a wrong or an old email address. POLARIS Laboratories® is no different when it comes to data – one area that hinders us and our laboratories is receiving accurate fluid information with your sample.

Why the Right Fluid Information is So Critical

It’s pretty simple really. If you send in a sample with incorrect fluid information, when we compare the test results from your sample to the information submitted, (the basis of a lot of the maintenance recommendations we make to you). If that information is correct, we are able to give you precise, actionable recommendations tailored to your application. If the information is incorrect, not only do the maintenance recommendations no longer hold as much value, but in some cases, we may recommend an incorrect action or repair.

To make matters worse, your test results may be delayed. For example, with the wrong fluid identified when submitted, we may send samples back to be retested in our laboratories to confirm, what looks like on paper, to be an incorrect result. This delays the results getting back to you. A more extreme example is submitting a used engine oil as an engine coolant, meaning the wrong test package may be applied, resulting in the sample going through the complete wrong testing thus missing issues you desperately need to be identified.

Blood Work as an Analogy

A good analogy for this would be getting getting blood taken at a doctor’s office. My blood, a middle-aged man, is submitted but the paperwork is mixed up. But because of the incorrect information, my blood is tested and the results compared to a 15 year old female – a very extreme case, but it could happen. My doctor gets the results back and then instructs me to go directly to hospital because my results say I’m in critical condition. The results from my blood are considered normal for a middle-aged male, but definitely abnormal for a 15-year old female.

Better Data = Better Predictions

It’s critical to a successful fluid analysis program that all applicable fields are filled in when submitting a sample. Testing in the laboratory is heavily dependent on the submission fields and directly affects whether or not a fluid receives the right laboratory testing and you recieve the right recommendations.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published August 11, 2021