POLARIS Laboratories® Expands Suite of Integrated Partners

POLARIS Laboratories® is excited to announce the expansion of our suite of integration partnerships. The company has worked with several Integrated Partners to develop API (Application Programming Interface) connections to seamlessly connect HORIZON®, POLARIS Laboratories’ data management system, to maintenance systems, reliability service providers and original equipment manufacturers. We call this integration solution DataConnect.

Integrating sample analysis data and recommendations allows customers to see their sample results, submit samples and create maintenance actions and work orders within the platform of their choosing. Thus, allowing a ‘single view’ platform to monitor the health and reliability of equipment.

Included in these expanded partnerships:

CMMS (Computerized Maintenance Management System) and ERP Systems (Enterprise Resource Planning)

  • Total Resource Management, providing integration with IBM Maximo Enterprise Asset Management
  • Asset Management Solutions, providing integration with JD Edwards
  • ProExcellence, integration with SAP
  • Cohesive, providing integration with IBM Maximo Enterprise Asset Management
  • Fluke, providing integration with eMaint Enterprise Asset Management
  • UpKeep, Asset Operations Management
  • Fiix, Maintenance Software
  • DINGO, Predictive Maintenance Software
  • Tango, Reliability Information Management

Reliability Service Providers

  • IJSSEL, Predictive Maintenance Solutions
  • Allied Reliability, Asset Management Solutions
  • AVT, Predictive Maintenance and Reliability
  • I-care Reliability, Predictive Maintenance Solutions

OEM’s

  • Hitachi / ConSite, Hitachi Construction Machinery Corporation

Our list of Integrated Partners continues to grow. Whether you perform the integration of fluid analysis data on your own, work with your primary maintenance management platform or work with one of our integrated partners, POLARIS Laboratories® has the solution to your data challenges. Want to join the list of integrated partners? Contact rclark@polarislabs.com.

Coolant Condition Monitoring: Comparing Testing

Include Cooling Systems in Regular Maintenance

Coolant testing is an important aspect of maintaining the cooling system. Part of your normal maintenance schedule should include inspecting the cooling system at every maintenance interval. During operation, the cooling system must 1) circulate coolant, 2) transfer heat away from the engine and 3) dissipate the heat through the radiator to the atmosphere before circulating back through the engine again. These three functions must occur efficiently to maintain the proper operating temperature. If the lubricant is showing increased wear, increase in viscosity and or oxidation, the cooling system should be tested. Cooling system health effects how well the equipment will operate and ensures the ability for the fluids in the system to protect the equipment metals from damage.

To verify the coolant properties are adequate, testing becomes a critical part of system maintenance. Field testing conducted on-site should be a used as a screening tool to determine if laboratory testing is required earlier than scheduled. Laboratory testing is a critical part of any fluid analysis program in addition to field testing.

Field Testing & Laboratory Testing

Field testing includes monitoring visual characteristics of the coolant using test strips to determine corrosion protection levels, pH and or freeze point. A handheld refractometer for testing glycol percent is another useful tool. Some limitations with field testing include: coolant with a normal appearance could be misleading, low precision and limited scope of testing. Most laboratory testing will report results in parts per million and detect various materials smaller than the eye can see. Laboratory testing can be used to determine the validity of concerns with corrosion of system metals, hard water contamination, early degradation breakdown of the glycol and other chemical properties. Laboratory testing is typically recommended to be conducted twice a year for normal use engines (Spring & Fall) and every quarter for high-hour or extreme duty engines.

There’s more to coolant analysis than testing coolant formulations – it’s about identifying problems within the cooling system that can be detrimental to engine performance and lead to premature engine failure. Below are some advantages and disadvantages of using coolant test strips and laboratory testing.

 

 

 

 

Proven Impact. Proven Uptime. Proven Savings.

Let us prove it to you.

Published February 9, 2023

Sulfur Content in Diesel Fuel: Limits and Regulations

EPA Regulations and The Clean Air Act

Since the 1990s, diesel fuel quality has been an essential topic of discussion due to the increased regulations that the U.S. EPA has implemented over the years as a result of the Clean Air Act (CAA). One of the main goals of this Act was to set and achieve National Ambient Air Quality Standards (NAAQS) in every state. The 1990 CAA amendments were later revised to include the issuance of technology-based standards that require the maximum degree of reduction of emissions of hazardous air pollutants. New regulations meant engine manufacturers and diesel fuel producers would have to work together to determine how to meet the new standards best.

Effects of Emission Regulations on Diesel Fuel

The most easily attainable and regulated fuel property that the EPA regulated in the 90’s was sulfur content. Historically, ASTM standards have limited sulfur content to .5% (wt.). A few years later, in October 1993, a limit for Low Sulfur diesel fuel was introduced as 500 ppm = 0.05% (wt.) to facilitate the particulate sulfate reductions to meet the emissions standards.

Fast forward to June 2006, the maximum sulfur level in the U.S. was reduced to 15 ppm (Ultra Low Sulfur Diesel) for on road (highway) diesel engines and fuel supplies and was subsequently adopted by all nonroad, locomotive and marine (NRLM) diesel fuel and equipment in 2014. In addition, the regulations prompted engine manufacturers to deploy catalyst-based emission control devices, such as NOx absorbers and Diesel Particulate Filters (DPF), to meet new diesel emission tier standards.

Sulfur emission reduction has also been an important subject for the maritime industry. In 2010, marine standards that were previously exempt were further reduced from previous levels to 1,000 ppm within the Sulfur Emissions Control Areas (SECAs) for North America and the U.S. Caribbean Sea. In January 2020, new international rules put forth under the International Maritime Organization also reduced the global sulfur limit (outside SECAs) in marine fuels to 0.5% or 5000 ppm (down from 3.5%), and the change is expected to have a ripple effect throughout the fuel industry.

The U.S. Energy Information Administration (EIA) has noted that the change in sulfur limits has wide-ranging repercussions for the global refining and shipping industries, as well as petroleum supply, demand, trade flows and prices. From market disruptions from the COVID pandemic and today’s economic pressures on buying and selling bulk diesel fuel to meet demands, monitoring the sulfur content of your diesel fuel is still important decades after emission standards were implemented.

Reducing sulfur content in diesel fuel has placed a new demand on diesel engines and emission control systems in operation today. Factoring in the aging and foreign fuel supplies in circulation and storage, along with the ever-changing regulations means ensuring that equipment fuel supplies meet the required specifications is now necessary.

Check out our recommended testing for diesel fuels here.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published February 3, 2023