VIDEO: How to Bridge the Gap with Filter Debris Analysis

Oil filters are designed to remove contaminants and particles that would have otherwise damaged the system – but did you know this also removes the evidence that data analysts can use to provide in-depth maintenance recommendations? Dive deeper into the particles, contamination and evidence of wear that are caught in the oil filter by sending in your oil filter for Filter Debris Analysis.

FDA Dives Deeper Into Contamination Causes

Standard oil analysis (Elemental Analysis by ICP) can provide you with information on what’s going on in your equipment – but, there are limits to what ICP can detect. ICP can only detect fine particles of approximately 10 microns or smaller – leaving larger particles unidentified. Filter Debris Analysis helps identify larger wear particle debris as well as outside contamination. The wear morphology, metal type(s) and contamination types can be identified to help determine the possible source of the wear or contamination.

How is FDA Performed?

The FDA process involves flushing the filter, extracting the particles and performing several tests (including micropatch and analytical ferrography) to identify wear particles. Check out the video below to see how we perform Filter Debris Analysis at POLARIS Laboratories®:

Learn more about Filter Debris Analysis by reading our technical bulletin.

Interested in adding FDA to your current fluid analysis program? Contact customer service or your account manager.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published October 9, 2018

How Gasoline Engine Technology Affects Fuel Dilution

Do you have a newer vehicle? Are your reports showing high fuel dilution?

Changes in gasoline engine technology, along with direct injection, have affected the internal combustion process in a gasoline engine. But, what does this mean for oil analysis? We’ve received a large amount of inquiries and questions regarding this topic from our customers. Click below to download the newest Technical Bulletin to learn the differences in engine technology and how it can affect your fluid analysis results.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published September 4, 2018

How to Get Your Sample Results Faster

Are you wanting to receive your sample results and maintenance recommendations faster? There are many steps you can take to ensure you get your results in a timely manner – so you can quickly take action to save your equipment.

  1. Use HORIZON®
    • Register your equipment and components online or mobile app through our HORIZON data management system online or use the mobile app
    • Log your fluid sample (and barcode information) in HORIZON and submit it with the equipment information
    • Apply a barcode to your sample and send it in the mail to one of our laboratory locations
    • When we receive your sample in the mail, the barcode is scanned and automatically pulls up the sample and equipment information you submitted via HORIZON
    • Submitting your sample information online provides us with all the necessary information ahead of time – allowing us to send your results back to you faster
  2. Submit samples on the go
    • Using the convenient HORIZON mobile app for Android or Apple for mobile devices, you can submit samples right at your equipment, immediately after you take the sample
    • Submitting your sample information via the mobile app requires less fields of information
    • Read more about the benefits of online sample submission by reading Take Five and Submit Your Sample
  3. Eliminate errors if sending manually
    • If you choose not to register and submit your sample information via HORIZON, you will need to fill out the form by hand
      • It’s best to use an quick-dry ink pen to fill out the paperwork (make sure the writing is legible and the paperwork isn’t damaged from from oil spills). This will eliminate the need for sample processing to decipher handwriting or dirty paperwork – resulting in inputting incorrect information into our system.
    • Send in the sample information form with the sample to one of our laboratory locations
  4. Pull the best sample

In the maintenance field, timing is key – it can be the deciding factor whether your equipment breaks down and you have unexpected downtime. At POLARIS Laboratories®, we are continually making improvements so you can get your results back faster. After all, your equipments’ health and lifecycle depend on it.

If you have any questions about sending in your sample or need help setting up a HORIZON account, contact us at 317.808.3750 or email custserv@eoilreports.com.

4 Tips to Help You Become a Sampling Pro

Since we introduced our new 3 oz. sample jar that is better equipped for sampling, we’ve seen a drastic decrease in leaking, messy bottles arriving at our laboratory – meaning you get your results back faster.

There are many benefits to the, somewhat still new, 3 oz. sample jar we released to our customers in the beginning of 2017. These benefits include translucency, higher temperature threshold and cap-locking with a wedge seal feature to prevent leaks.

Below are some extra tips to make sure you’re properly using the bottle like a pro and sampling correctly, so you can get the most accurate and reliable test results.

  1. Pull samples utilizing safe sampling practices [see our blog Fluid Analysis 101: 5 Tips for Collecting the Best Sample] and proper protective equipment. While the 3 oz. sample jar is designed to withstand higher fluid temperatures, safety should always be top of mind.
  2. Once the fluid sample has been taken, inspect the jar for particles – now that you can see the fluid that was pulled out of your equipment (due to the translucency of the jar), be aware of what is floating inside so when your results come back, proper action can be taken.
  3. Fill the sample bottle only to the designated “Fill Line” – no higher.
    • If there is fluid in the neck of the bottle, air may not release causing the cap to not seal properly.
  4. Do not over tighten (torque) the sample cap. The cap’s unique locking feature helps to ensure that it doesn’t loosen when the sample jar cools and the wedge seal prevents leaking.

We hope these extra tips will come in handy when you’re taking your next sample. Here at POLARIS Laboratories®, we’re continuously making improvements and providing useful resources to help our customers maximize their fluid analysis program.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published August 6, 2018

Achieving Operational Efficiency Through Program Improvement

Achieving maintenance operational efficiency requires focus, smart thinking and innovation. Mammoet, a heavy-lifting and transport company, was able to identify areas and opportunities for program improvement – this included leveraging teamwork, maximizing data management, implementing shipping enhancements and taking advantage of program management solutions available.

The improvements Mammoet implemented in their program opened up the opportunity for the company to move from preventive maintenance to predictive maintenance and significantly extending their oil drain intervals. Learn more by reading the case study.

A Look Back: Oil Analysis Then and Now

As I look back, it is hard to believe I have now been involved in the oil analysis industry for more than 35 years. I was first introduced to this science in 1983, while in the military. I was assigned to my first permanent duty station as a track vehicle mechanic (MOS 63Y10). My motor officer was sold on the value that oil analysis offered and over time – I began to learn and believe in the value as well.

So what has changed over the years? First off, ‘oil analysis’ is now most commonly referred to as ‘fluid analysis’ as other fluids are commonly tested as part of customer programs – not just oil.

Then: Reactive

In the 80’s and 90’s, we used oil analysis to help prevent catastrophic failure from occurring. You might say a ‘just in time’ maintenance approach. If a high severity oil analysis report was received on a specific piece of equipment, the equipment associated with the high severity report would be moved up on the priority list for maintenance, more often than not a ‘reactive’ maintenance event.

Now: Predictive

Today, using not only oil analysis, but including fuel analysis and coolant analysis, to prevent catastrophic failures from occurring remains a primary goal. However, if you end your focus there you are missing out and not taking full advantage of what these services can offer your maintenance program today.

World-class maintenance organizations are now taking advantage of the full capabilities that an effective fluid analysis program offers. They are no longer just concentrating on preventing catastrophic failures, but also:

  • Monitoring oil condition: allowing the ability to optimize drain intervals.
  • Monitoring fluid cleanliness: taking action to filter and clean fluids and by doing so, greatly increasing component life hours.
  • Monitoring additives: allowing the ability to quickly detect when lubricant mixing or cross contamination has occurred
  • Moving from preventative maintenance to predictive maintenance: with fluid analysis, and additional non-invasive testing technologies, we can monitor the health of the components. Thus, allowing to move away from the old practices of replacing or rebuilding components on a prescribed interval and performing rebuild and replacements only when alerted to do so.
  • Coolant analysis: For liquid-cooled components, coolant analysis is essential. Did you know that more than 50 percent of all “preventable, premature” engine failures are related to cooling system issues?
  • Fuel analysis: For today’s diesel engines, tolerances are tighter than ever before. Issues with fuel results in fuel system wear, decreased performance and even failure.

It’s No Longer Reactive

There is much more that a quality fluid analysis program program offers. Since today’s fluid analysis capabilities alerts us to the very earliest stages of wear, we are able to plan and schedule maintenance activities and move away from reactive, unplanned events. By doing so, we find that equipment availability increases, completion rate of scheduled events improves, the safety risk associated with reactive maintenance is greatly diminished, equipment availability improves and maintenance cost are reduced.

Testing Procedures Have Changed, Too

What about the test procedures themselves, have they improved over the years? The answer is yes! When I first began my career, the standard test slate included monitoring 18 elements for routine testing. Today, POLARIS Laboratories® standard routine test slate includes 24 elements, allowing the monitoring of wear for the latest generation of your equipment. The improvements have not stopped there. Improvements in particle counting, fuel dilution, soot, water and even the reporting software have seen great improvements as well.

Innovative Report and Software Advancements

When it comes to the reporting software, we are no longer limited to reviewing just a single report but we can quickly identify common causes of high severity reports, amongst common component types and adjust our maintenance activities and strategies to overcome potential issues. Today’s testing can truly provide a significant return on investment and help keep your equipment running better than ever before.

In closing, I leave you this advice. Identify the goals of your fluid analysis program, then check your fluid analysis test package profile and ensure that the test that are being performed by your service provider includes the individual test to meet those goals. The times and the testing have changed and all test packages are not created equal. Goals and testing need to be aligned. If you have questions or would like to evaluate you current program I encourage you to contact your laboratory.

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 24, 2018

Contamination Control After a Flood

It’s been approximately one year since Hurricane Harvey hit the gulf coast. Harvey was a once-in-a-lifetime-size storm, some of Houston and surrounding areas are still recovering and for the most part, have resumed life as usual. As we come closer to this year’s Hurricane season, it’s important to know what water contamination can mean for your equipment, and what you can do to prepare for these devastating – and unexpected – acts of nature.

What to Look For

If a flood does occur, what are some of the signs to look for on your equipment?

  • Dried mud crusted on your containers
  • High water marks above your container
  • Whether your cap lids and vents are still in place
  • Filters are saturated with water
  • Your oil is milky or cloudy
  • When you take a sample, is there free water separated?

Test ASAP to Determine Contamination

If you see any of these issues we recommend immediate testing. We offer several different testing methods that can identify water contamination:

  • The simplest and way and most often used is Water by Crackle. This is usually the quickest – but the least precise. It can indicate the need for further testing with more advanced methods.
  • Fourier Transform Infrared spectroscopy (FTIR) can determine an approximate amount of oil in water.
  • Water by Karl Fischer – a measured amount of the oil sample is introduced into the titration chamber of an automated Karl Fischer Titrator. The sample is titrated to an electromagnetic endpoint. The result is reported in % water or parts per million.

Click here to see a complete list of the tests and services POLARIS Laboratories® offers.

Moisture, when it contaminates hydraulic and lubricating oils, has a degrading effect to both the lubricant and the machine. Free or emulsified water can lead to excessive wear and can destroy bearings and effect the aging rate of your oil. When in doubt, it’s best to test right away to prevent further damage to your equipment.

It’s also important to continuously test your oil – to establish consistent sample history and to begin creating a baseline for your equipment. In an event a hurricane or unexpected disaster does occur, you’ll be able to tell if your oil has been contaminated or not.

 

Jonathan Hughes

Houston Laboratory Manager

POLARIS Laboratories®

 

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published July 17, 2018

Are You Using the Right Test Package?

POLARIS Laboratories® offers a wide range of fluid analysis test packages and choosing the right ones for your equipment can be difficult (especially if you’re new to fluid analysis). The most common mistake is believing basic testing is a good starting point for all programs. Basic tests for testing your oil, coolant and diesel fuel are clearly much better than changing oil at set intervals and then fixing problems after the equipment breaks down. However, it can only provide limited maintenance recommendations. So, how do you know what test packages are best for your program?

What are the Goals?

A good place to start is going back to the goals of your program that were established when you started your fluid analysis program. For example, if your goal is to optimize drain intervals of diesel engines, you need to monitor trends on when oil properties break down and can’t protect the equipment adequately. Basic testing doesn’t provide the necessary testing (oxidation/nitration and base number) to gather the data for you to make an informed decision based on the results of a basic test. It’s important to re-visit the goals of your fluid analysis program before you approach test package options and this will allow you to determine whether you need basic or advanced testing.

An Example: Karl Fisher vs. Crackle

Some test packages seem to cover the same areas, but the more expensive the test is, doesn’t necessarily mean it will provide better recommendations. For example, the Karl Fisher test runs at a higher price than the crackle method, both tests measure the water concentration, but your equipment, fluid type and how the equipment is being used affects what test should be performed.

Crackle is only an estimate of the water content while Karl Fisher will accurately measure the water content and report it in percent or parts per million. Engine oils are designed to hold a certain amount of water, so it takes a high concentration to affect the system. Crackle testing is adequate for this purpose, while Karl Fischer testing is a bit of an overkill.

On the other hand, the fluid in a hydraulic or turbine system isn’t designed to absorb nearly as much water as engine oil. In addition, the concentration where water begins to damage those systems is below the detection limit of a crackle test. In this case, Karl Fisher testing is necessary to identify when the equipment is at risk.

Choosing a Test Package

When choosing your fluid test package, keep the big picture in mind – the real savings come from preventing breakdowns, optimizing fluid drains and extending the useful life of equipment. As long as your testing provides data and recommendations that support those goals, you’re on the right track. Click here to download the complete testing list of tests provided by POLARIS Laboratories®.

If you want to discuss your current fluid analysis program or discuss the test packages options available, contact your account manager or email custserv@eoilreports.com.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published June 28, 2018

ISO/IEC 17025: What Does it Mean to You?

In this day and age there are many internationally recognized quality standards. One of the most common is ISO 9001, used predominantly in the production industries. This standard primarily addresses management, corrective and preventive polices and procurement. I’m sure you’ve heard of ISO/IEC 17025 in relation to laboratory quality standards and accreditation. These requirements were developed from the ISO 9001 – with a specific focus on laboratory functions.

What is ISO/IEC 17025?

ISO/IEC 17025 specifies requirements for the competency of the entity to carry out tests and/or calibrations, including sampling. It covers testing and calibration performed using standard methods, non-standard methods and laboratory-developed methods. It ensures accredited laboratories are able to demonstrate that they are technically proficient and that the data produced is both accurate and precise. While it is a voluntary requirement, the accreditation requirements are reviewed by third-parties to ensure that the laboratory’s quality management system is thoroughly evaluated to guarantee continued technical competency and compliance with ISO/IEC 17025.

Laboratory accreditation bodies use the ISO 17025 standard specifically to assess factors relevant to a laboratory’s ability to produce precise, accurate test and calibration data. This includes:

  • Traceability of measurements and calibrations to both national and international standards
  • Technical competence of laboratory staff
  • Test equipment maintenance
  • Quality assurance of test and calibration data
  • Validity and appropriateness of test methods
  • Appropriate handling and transportation of test items

Accreditation bodies regularly re-assess laboratories that are under the ISO/IEC 17025 for continued compliance to the standard. Furthermore, laboratories are required to participate in regular proficiency testing programs, to demonstrate their ongoing competence to perform the testing.

So, what does all of this mean to you, the customer?

Whether you are a current customer or are looking to begin fluid analysis testing with a laboratory, selecting an ISO/IEC-accredited laboratory helps you:

  • Minimize risk – an important component of the ISO 9001 quality standard.
  • Ensure you are choosing a technically-competent laboratory.
  • Gain peace of mind that the laboratory a has sound, proficient quality system in place.
  • Be confident the laboratory has had its systems and processes evaluated by an independent third party.

As an ISO/IEC 17025-accredited laboratory, POLARIS Laboratories® demonstrates a proven track record of having a robust and effective quality system to ensure that you, the customer, can expect accurate and reliable sample data and technically-sound maintenance recommendations. Learn more about POLARIS Laboratories’ commitment to quality performance and our ISO/IEC 17025 accreditation.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published June 4, 2018

Creating Customer Value with Lean

As a leading fluid analysis laboratory – we strive to meet our customers needs and exceed their expectations. Our fluid analysis laboratories operate under Lean principles – maximizing customer value while minimizing waste. Simply put, this means we create more value using fewer resources. The Lean ideas, principles and standards were originally created by Toyota to eliminate waste and inefficiency in its manufacturing operations. The process became so successful that it has been embraced in manufacturing sectors around the world – POLARIS Laboratories® included. We fully embrace and operate under Lean principles in all six of our laboratory locations.

So, how do we ensure our laboratory is operating efficiently and effectively through these principles? Some of the practices, standards and initiatives we have implemented to support a Lean laboratory environment are below.

Efficient work flow, standard work and performance management:

  • No walls or separation of testing areas – this promotes flexible operations and the sharing of workloads and resources.
  • Visualization of workloads at each test station.
  • Workplace design – this allows the combination of tests to create balanced, productive technician workloads and standard work while reducing waste of motion and energy.
  • Visual management of laboratory performance (for example, TV monitors display current work performance and performance over time. These metrics are monitored and reviewed daily).

Effective use of staff time and minimizing waste of motion:

  • Adjacent and accessible conference and huddle rooms that encourage collaboration.
  • Areas dedicated specifically to write-ups, reviews and approvals provides timely documentation.
  • Laboratory test stations are in close proximity to sample processing, ensuring a quick transfer of samples from receipt to testing stations.
  • Central location of parts and consumables near test stations.

Maximize future configurability:

  • The building’s HVAC and electrical systems are set up in a grid system – allowing stations to be moved easily if necessary.
  • Test stations equipped with wheels allow for quick and easy reconfiguration.

Lean behaviors and communication:

  • Glass walls between support staff and operation staff offers an open-office feel.
  • Laboratories are equipped with Process Improvement Boards throughout.

Support workplace organization and “5S”:

5S goes hand-in-hand with Lean principles (Sort, Set in Order, Shine, Standardize, Sustain) and improves workplace efficiency and eliminates waste.

  • All laboratory workstations are identified with labels for designated supplies.
  • Easily identifiable color-coded sample trays provide effective sample management, processing and testing.
  • Workstations equipped with 5S checklist – which is reviewed and approved daily.
  • Designated storage and organization throughout the laboratory.

By ensuring our laboratory facilities, staff and testing stations align with Lean principles, we continue to provide maximum value to our customers – saving time and money – and more of their equipment.

Proven Impact. Proven Uptime. Proven Savings.
Let us prove it to you.

Published May 29, 2018